685 research outputs found
Classification of Possible Finite-Time Singularities by Functional Renormalization
Starting from a representation of the early time evolution of a dynamical
system in terms of the polynomial expression of some observable f (t) as a
function of the time variable in some interval 0 < t < T, we investigate how to
extrapolate/forecast in some optimal stability sense the future evolution of
f(t) for time t>T. Using the functional renormalization of Yukalov and Gluzman,
we offer a general classification of the possible regimes that can be defined
based on the sole knowledge of the coefficients of a second-order polynomial
representation of the dynamics. In particular, we investigate the conditions
for the occurence of finite-time singularities from the structure of the time
series, and quantify the critical time and the functional nature of the
singularity when present. We also describe the regimes when a smooth extremum
replaces the singularity and determine its position and amplitude. This extends
previous works by (1) quantifying the stability of the functional
renormalization method more accurately, (2) introducing new global constraints
in terms of moments and (3) going beyond the ``mean-field'' approximation.Comment: Latex document of 18 pages + 7 ps figure
Are Financial Crashes Predictable?
We critically review recent claims that financial crashes can be predicted
using the idea of log-periodic oscillations or by other methods inspired by the
physics of critical phenomena. In particular, the October 1997 `correction'
does not appear to be the accumulation point of a geometric series of local
minima.Comment: LaTeX, 5 pages + 1 postscript figur
Self-Similar Factor Approximants
The problem of reconstructing functions from their asymptotic expansions in
powers of a small variable is addressed by deriving a novel type of
approximants. The derivation is based on the self-similar approximation theory,
which presents the passage from one approximant to another as the motion
realized by a dynamical system with the property of group self-similarity. The
derived approximants, because of their form, are named the self-similar factor
approximants. These complement the obtained earlier self-similar exponential
approximants and self-similar root approximants. The specific feature of the
self-similar factor approximants is that their control functions, providing
convergence of the computational algorithm, are completely defined from the
accuracy-through-order conditions. These approximants contain the Pade
approximants as a particular case, and in some limit they can be reduced to the
self-similar exponential approximants previously introduced by two of us. It is
proved that the self-similar factor approximants are able to reproduce exactly
a wide class of functions which include a variety of transcendental functions.
For other functions, not pertaining to this exactly reproducible class, the
factor approximants provide very accurate approximations, whose accuracy
surpasses significantly that of the most accurate Pade approximants. This is
illustrated by a number of examples showing the generality and accuracy of the
factor approximants even when conventional techniques meet serious
difficulties.Comment: 22 pages + 11 ps figure
Critical Indices as Limits of Control Functions
A variant of self-similar approximation theory is suggested, permitting an
easy and accurate summation of divergent series consisting of only a few terms.
The method is based on a power-law algebraic transformation, whose powers play
the role of control functions governing the fastest convergence of the
renormalized series. A striking relation between the theory of critical
phenomena and optimal control theory is discovered: The critical indices are
found to be directly related to limits of control functions at critical points.
The method is applied to calculating the critical indices for several difficult
problems. The results are in very good agreement with accurate numerical data.Comment: 1 file, 5 pages, RevTe
Quenched Averages for self-avoiding walks and polygons on deterministic fractals
We study rooted self avoiding polygons and self avoiding walks on
deterministic fractal lattices of finite ramification index. Different sites on
such lattices are not equivalent, and the number of rooted open walks W_n(S),
and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We
use exact recursion equations on the fractal to determine the generating
functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These
are used to compute the averages and over different positions of S. We find that the connectivity constant
, and the radius of gyration exponent are the same for the annealed
and quenched averages. However, , and , where the exponents
and take values different from the annealed case. These
are expressed as the Lyapunov exponents of random product of finite-dimensional
matrices. For the 3-simplex lattice, our numerical estimation gives ; and , to be
compared with the annealed values and .Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
Long-time Behavior of State Functions for Badyko Models
In this note we examine the long-time behavior of state functions for a climate energy balance model (Budyko Model) in the strongest topologies of the phase and the extended phase spaces. Strongest convergence results for all weak solutions are obtained. New structure and regularity properties for global and trajectory attractors are justified
Non-perturbative calculations for the effective potential of the symmetric and non-Hermitian field theoretic model
We investigate the effective potential of the symmetric
field theory, perturbatively as well as non-perturbatively. For the
perturbative calculations, we first use normal ordering to obtain the first
order effective potential from which the predicted vacuum condensate vanishes
exponentially as in agreement with previous calculations. For the
higher orders, we employed the invariance of the bare parameters under the
change of the mass scale to fix the transformed form totally equivalent to
the original theory. The form so obtained up to is new and shows that all
the 1PI amplitudes are perurbative for both and regions. For
the intermediate region, we modified the fractal self-similar resummation
method to have a unique resummation formula for all values. This unique
formula is necessary because the effective potential is the generating
functional for all the 1PI amplitudes which can be obtained via and thus we can obtain an analytic calculation for the 1PI
amplitudes. Again, the resummed from of the effective potential is new and
interpolates the effective potential between the perturbative regions.
Moreover, the resummed effective potential agrees in spirit of previous
calculation concerning bound states.Comment: 20 page
Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins
The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction
Multifractality in Time Series
We apply the concepts of multifractal physics to financial time series in
order to characterize the onset of crash for the Standard & Poor's 500 stock
index x(t). It is found that within the framework of multifractality, the
"analogous" specific heat of the S&P500 discrete price index displays a
shoulder to the right of the main peak for low values of time lags. On
decreasing T, the presence of the shoulder is a consequence of the peaked,
temporal x(t+T)-x(t) fluctuations in this regime. For large time lags (T>80),
we have found that C_{q} displays typical features of a classical phase
transition at a critical point. An example of such dynamic phase transition in
a simple economic model system, based on a mapping with multifractality
phenomena in random multiplicative processes, is also presented by applying
former results obtained with a continuous probability theory for describing
scaling measures.Comment: 22 pages, Revtex, 4 ps figures - To appear J. Phys. A (2000
A Comparative Study of the Magnetization Process of Two-Dimensional Antiferromagnets
Plateaux in the magnetization curves of the square, triangular and hexagonal
lattice spin-1/2 XXZ antiferromagnet are investigated. One finds a zero
magnetization plateau (corresponding to a spin-gap) on the square and hexagonal
lattice with Ising-like anisotropies, and a plateau with one third of the
saturation magnetization on the triangular lattice which survives a small
amount of easy-plane anisotropy. Here we start with transfer matrix
computations for the Ising limit and continue with series in the XXZ-anisotropy
for plateau-boundaries using the groundstates of the Ising limit. The main
focus is then a numerical computation of the magnetization curves with
anisotropies in the vicinity of the isotropic situation. Finally, we discuss
the universality class associated to the asymptotic behaviour of the
magnetization curve close to saturation, as observed numerically in two and
higher dimensions.Comment: 21 pages plain TeX (with macro package included), 7 PostScript
figures included using psfig.st
- …
