241 research outputs found

    Weighted Fixed Points in Self-Similar Analysis of Time Series

    Full text link
    The self-similar analysis of time series is generalized by introducing the notion of scenario probabilities. This makes it possible to give a complete statistical description for the forecast spectrum by defining the average forecast as a weighted fixed point and by calculating the corresponding a priori standard deviation and variance coefficient. Several examples of stock-market time series illustrate the method.Comment: two additional references are include

    Production of simian virus 40 large tumor antigen in bacteria: altered DNA-binding specificity and dna-replication activity of underphosphorylated large tumor antigen

    Get PDF
    A bacterial expression system was used to produce simian virus 40 large tumor antigen (T antigen) in the absence of the extensive posttranslational modifications that occur in mammalian cells. Wild-type T antigen produced in bacteria retained a specific subset of the biochemical activities displayed by its mammalian counterpart. Escherichia coli T antigen functioned as a helicase and bound to DNA fragments containing either site I or the wild-type origin of replication in a manner identical to mammalian T antigen. However, T antigen purified from E. coli did not efficiently bind to site II, an essential cis element within the simian virus 40 origin of replication. It therefore could not unwind origin-containing plasmids or efficiently replicate simian virus 40 DNA in vitro. The ability of protein phosphorylation to modulate the intrinsic preference of full-length T antigen for either site I or site II is discussed

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    Algebraic Self-Similar Renormalization in Theory of Critical Phenomena

    Full text link
    We consider the method of self-similar renormalization for calculating critical temperatures and critical indices. A new optimized variant of the method for an effective summation of asymptotic series is suggested and illustrated by several different examples. The advantage of the method is in combining simplicity with high accuracy.Comment: 1 file, 44 pages, RevTe

    Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder

    Full text link
    This is a review of ground-state features of the s=1/2 Heisenberg antiferromagnet on two-dimensional lattices. A central issue is the interplay of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor bonds, geometric frustration) and quantum fluctuations and their impact on possible long-range order. This article presents a unified summary of all 11 two-dimensional uniform Archimedean lattices which include e.g. the square, triangular and kagome lattice. We find that the ground state of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered in most cases. However, the interplay of geometric frustration and quantum fluctuations gives rise to a quantum paramagnetic ground state without semi-classical long-range order on two lattices which are precisely those among the 11 uniform Archimedean lattices with a highly degenerate ground state in the classical limit. The first one is the famous kagome lattice where many low-lying singlet excitations are known to arise in the spin gap. The second lattice is called star lattice and has a clear gap to all excitations. Modification of certain bonds leads to quantum phase transitions which are also discussed briefly. Furthermore, we discuss the magnetization process of the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like plateaus and a magnetization jump just below the saturation field. As an illustration we discuss the two-dimensional Shastry-Sutherland model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review article. This version corrects two further typographic errors (three total with respect to the published version), see page 2 for detail

    GPR80/99, proposed to be the P2Y15 receptor activated by adenosine and AMP, is not a P2Y receptor

    Get PDF
    The orphan receptor GPR80 (also called GPR99) was recently reported to be the P2Y15 receptor activated by AMP and adenosine and coupled to increases in cyclic AMP accumulation and intracellular Ca2+ mobilization (Inbe et al. J Biol Chem 2004; 279: 19790–9[12]). However, the cell line (HEK293) used to carry out those studies endogenously expresses A2A and A2B adenosine receptors as well as multiple P2Y receptors, which complicates the analysis of a potential P2Y receptor. To determine unambiguously whether GPR80 is a P2Y receptor subtype, HA-tagged GPR80 was either stably expressed in CHO cells or transiently expressed in COS-7 and HEK293 cells, and cell surface expression was verified by radioimmunoassay (RIA). COS-7 cells overexpressing GPR80 showed a consistent twofold increase in basal inositol phosphate accumulation. However, neither adenosine nor AMP was capable of promoting accumulation of either cyclic AMP or inositol phosphates in any of the three GPR80-expressing cells. A recent paper (He et al. Nature 2004; 429: 188–93 [15]) reported that GPR80 is a Gq-coupled receptor activated by the citric acid cycle intermediate, α-ketoglutarate. Consistent with this report, α-ketoglutarate promoted inositol phosphate accumulation in CHO and HEK293 cells expressing GPR80, and pretreatment of GPR80-expressing COS-7 cells with glutamate dehydrogenase, which converts α-ketoglutarate to glutamate, decreased basal levels of inositol phosphates. Taken together, these data demonstrate that GPR80 is not activated by adenosine, AMP or other nucleotides, but instead is activated by α-ketoglutarate. Therefore, GPR80 is not a new member of the P2Y receptor family

    hHSS1: a novel secreted factor and suppressor of glioma growth located at chromosome 19q13.33

    Get PDF
    The completion of the Human Genome Project resulted in discovery of many unknown novel genes. This feat paved the way for the future development of novel therapeutics for the treatment of human disease based on novel biological functions and pathways. Towards this aim, we undertook a bioinformatics analysis of in-house microarray data derived from purified hematopoietic stem cell populations. This effort led to the discovery of HSS1 (Hematopoietic Signal peptide-containing Secreted 1) and its splice variant HSM1 (Hematopoietic Signal peptide-containing Membrane domain-containing 1). HSS1 gene is evolutionarily conserved across species, phyla and even kingdoms, including mammals, invertebrates and plants. Structural analysis showed no homology between HSS1 and known proteins or known protein domains, indicating that it was a truly novel protein. Interestingly, the human HSS1 (hHSS1) gene is located at chromosome 19q13.33, a genomic region implicated in various cancers, including malignant glioma. Stable expression of hHSS1 in glioma-derived A172 and U87 cell lines greatly reduced their proliferation rates compared to mock-transfected cells. hHSS1 expression significantly affected the malignant phenotype of U87 cells both in vitro and in vivo. Further, preliminary immunohistochemical analysis revealed an increase in hHSS1/HSM1 immunoreactivity in two out of four high-grade astrocytomas (glioblastoma multiforme, WHO IV) as compared to low expression in all four low-grade diffuse astrocytomas (WHO grade II). High-expression of hHSS1 in high-grade gliomas was further supported by microarray data, which indicated that mesenchymal subclass gliomas exclusively up-regulated hHSS1. Our data reveal that HSS1 is a truly novel protein defining a new class of secreted factors, and that it may have an important role in cancer, particularly glioma

    Basics of Bose-Einstein Condensation

    Full text link
    The review is devoted to the elucidation of the basic problems arising in the theoretical investigation of systems with Bose-Einstein condensate. Understanding these challenging problems is necessary for the correct description of Bose-condensed systems. The principal problems considered in the review are as follows: (i) What is the relation between Bose-Einstein condensation and global gauge symmetry breaking? (ii) How to resolve the Hohenberg-Martin dilemma of conserving versus gapless theories? (iii) How to describe Bose-condensed systems in strong spatially random potentials? (iv) Whether thermodynamically anomalous fluctuations in Bose systems are admissible? (v) How to create nonground-state condensates? Detailed answers to these questions are given in the review. As examples of nonequilibrium condensates, three cases are described: coherent modes, turbulent superfluids, and heterophase fluids.Comment: Review articl
    corecore