9 research outputs found

    The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blends

    Get PDF
    Hybrid cements are composites made of Portland cement or Portland clinker and one or more supplementary cementitious materials like slag, fly ash or metakaolin, activated with an alkali salt. To date, their hydration mechanism and the phase formation at various temperatures is insufficiently understood, partly due to the large variability of the raw materials used. In the present study, three hybrid cements based on ground granulated blast furnace slag, fly ash, Portland clinker and sodium sulfate, and an alkali-activated slag/fly ash blend were cured at 10 and 21.5°C, and subsequently analyzed by XRD, 27Al MAS NMR, and TGA. The compressive strength of the hybrid cements was higher by up to 27% after 91-day curing at 10°C, compared to curing at 21.5°C. The experimental results as well as thermodynamic modeling indicate that the differences in compressive strength were related to a different phase assemblage, mainly differing amounts of strätlingite and C-N-A-S-H, and the associated differences of the volume of hydration products. While the strätlingite was amorphous to X-rays, it could be identified by 27Al MAS NMR spectroscopy, TGA and thermodynamic modeling. The microstructural properties of the hybrid cements and the alkali-activated slag/fly ash blend as well as the compatibility between thermodynamic modeling results and experimental data as a function of curing temperature and time are discussed

    Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods

    No full text
    One-part geopolymers were synthesized from two different silica materials (a silica-rich residue from chlorosilane production and a commercial microsilica) and sodium aluminate at three different SiO2/Al2O3 ratios and a nominal water/solids ratio of 0.5. The degree of reaction of the silica in the cured geopolymers (i.e. the fraction of silica dissolved to form aluminosilicates and minor products) was determined using two different methods: chemical attack with HCl to dissolve the reaction products and evaluation of peak areas of 29Si MAS NMR spectra. It was found that the degree of reaction of the silica decreases with increasing the silica content of the starting mix, and that it is almost constant after 1 day of curing and almost independent from the kind of starting silica. From the results of the NMR-based method, the mean SiO2/Al2O3 ratio of the reaction products (aluminosilicates and minor products) can be estimated to be ca. 2.0, nearly independent of the starting composition of the geopolymers. The dissolution method is biased, but of sufficient precision to be useful for following changes of the degree of reaction. Major crystalline phases in the cured geopolymers are zeolite A and/or hydrosodalite. Depending on the starting composition, the relative amounts of these zeolites vary; additionally, sodalite (only for the residue from chlorosilane production with >1 wt% Cl-), faujasite, and zeolite EMT can appear in the geopolymers. The 29Si and 27Al MAS NMR results indicate mainly Si(4Al) and Al(4Si) sites, in line with the presence of zeolite A, hydrosodalite, sodalite, and geopolymeric gel of comparatively low SiO2/Al2O3 ratio

    Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars

    No full text
    Alkali-activated fly ashes have been proposed for various applications where resistance against high temperatures is required, yet several details regarding the response of these materials to heat-exposure need to be clarified. In the present study, heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars was analyzed by in-situ acoustic emission (AE)detection during complete heating-cooling cycles (up to 3c1100 \ub0C), augmented by thermogravimetry and ex-situ SEM and XRD analyses. The applicability of the lightweight mortars as passive fire protection coatings was assessed by recording temperature-time curves of mortar-coated steel plates. Cracking during heating was limited and associated exclusively with the dehydration of the materials in the temperature range 3c90\u2013360 \ub0C. However, samples heated to temperatures above 3c600 \ub0C exhibited intense cracking on cooling. This was attributed to differential deformations caused by local sintering and partial melting at the glass transition temperature, and subsequent quenching on cooling

    Sulfuric acid resistance of one-part alkali-activated mortars

    Get PDF
    One-part alkali-activated (geopolymer) mortars based on three different silica-rich starting materials and sodium aluminate, with and without ground granulated blast furnace slag (GGBFS) addition, were tested regarding sulfuric acid resistance according to DIN 19573:2016-03 (70 days at pH = 1). Corresponding pastes were characterized by XRD, SEM, chemical analysis, 29Si MAS NMR and 1H-29Si CPMAS NMR after water storage and after acid exposure. The mortars exhibited a high resistance against sulfuric acid attack, with the best ones conforming to the requirements of DIN 19573:2016-03. The analytical results showed that this was due to precipitation of silica gel at the acid-mortar interface, which formed a mechanically stable layer that protected the subjacent mortar and thus inhibited further degradation. The addition of GGBFS decreased the acid resistance via formation of expansive calcium sulfate phases

    Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods

    Get PDF
    One-part geopolymers were synthesized from two different silica materials (a silica-rich residue from chlorosilane production and a commercial microsilica) and sodium aluminate at three different SiO2/Al2O3 ratios and a nominal water/solids ratio of 0.5. The degree of reaction of the silica in the cured geopolymers (i.e. the fraction of silica dissolved to form aluminosilicates and minor products) was determined using two different methods: chemical attack with HCl to dissolve the reaction products and evaluation of peak areas of 29Si MAS NMR spectra. It was found that the degree of reaction of the silica decreases with increasing the silica content of the starting mix, and that it is almost constant after 1 day of curing and almost independent from the kind of starting silica. From the results of the NMR-based method, the mean SiO2/Al2O3 ratio of the reaction products (aluminosilicates and minor products) can be estimated to be ca. 2.0, nearly independent of the starting composition of the geopolymers. The dissolution method is biased, but of sufficient precision to be useful for following changes of the degree of reaction. Major crystalline phases in the cured geopolymers are zeolite A and/or hydrosodalite. Depending on the starting composition, the relative amounts of these zeolites vary; additionally, sodalite (only for the residue from chlorosilane production with >1 wt% Cl-), faujasite, and zeolite EMT can appear in the geopolymers. The 29Si and 27Al MAS NMR results indicate mainly Si(4Al) and Al(4Si) sites, in line with the presence of zeolite A, hydrosodalite, sodalite, and geopolymeric gel of comparatively low SiO2/Al2O3 ratio

    The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites

    Get PDF
    This contribution presents the results of structural and compressive strength investigations on cured and high-temperature treated silica-based one-part geopolymer-zeolite composites. The specimens were synthesized from two different silica sources, sodium aluminate and water. The phase content as well as the compressive strength of the cured composites varied depending on the starting mix-design and the silica feedstock. Besides geopolymeric gel, A-type zeolites and hydrosodalites were the major reaction products. One of the silica feedstocks yielded significantly higher compressive strength (19 MPa), while the other one appears to cause less variation in phase content. Strength testing indicated an improvement on heating up to 200-400°C (28 MPa) followed by a moderate decrease up to 700°C. Above 700°C the systems underwent new phase formation and shrinkage (volume decrease) deformations. After exposure at 1000°C the different mixes consisted of a mix of several stuffed silica phases, almost pure hexagonal nepheline or amorphous phase. Depending on the mix-design, the onset temperature of the high temperature phase transformations varied

    Application of electrochemical methods for studying steel corrosion in alkali‐activated materials

    Get PDF
    Alkali-activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11-Task Force ‘Corrosion of steel in alkali-activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag-based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field
    corecore