311 research outputs found

    Quantifying cancer progression with conjunctive Bayesian networks

    Get PDF
    Motivation: Cancer is an evolutionary process characterized by accumulating mutations. However, the precise timing and the order of genetic alterations that drive tumor progression remain enigmatic

    Algebraic Rainich theory and antisymmetrisation in higher dimensions

    Full text link
    The classical Rainich(-Misner-Wheeler) theory gives necessary and sufficient conditions on an energy-momentum tensor TT to be that of a Maxwell field (a 2-form) in four dimensions. Via Einstein's equations these conditions can be expressed in terms of the Ricci tensor, thus providing conditions on a spacetime geometry for it to be an Einstein-Maxwell spacetime. One of the conditions is that T2T^2 is proportional to the metric, and it has previously been shown in arbitrary dimension that any tensor satisfying this condition is a superenergy tensor of a simple pp-form. Here we examine algebraic Rainich conditions for general pp-forms in higher dimensions and their relations to identities by antisymmetrisation. Using antisymmetrisation techniques we find new identities for superenergy tensors of these general (non-simple) forms, and we also prove in some cases the converse; that the identities are sufficient to determine the form. As an example we obtain the complete generalisation of the classical Rainich theory to five dimensions.Comment: 16 pages, LaTe

    Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression

    Get PDF
    The metabolic property of skeletal muscle adapts in response to an increased physiological demand by altering substrate utilization and gene expression. The calcium-regulated serine/threonine protein phosphatase calcineurin has been implicated in the transduction of motor neuron signals to alter gene expression programs in skeletal muscle. We utilized transgenic mice that overexpress an activated form of calcineurin in skeletal muscle (MCK-CnA*) to investigate the impact of calcineurin activation on metabolic properties of skeletal muscle. Activation of calcineurin increased glucose incorporation into glycogen and lipid oxidation in skeletal muscle. Activated calcineurin suppressed skeletal muscle glucose oxidation and increased lactate release. The enhancement in lipid oxidation was supported by increased expression of genes for lipid metabolism and mitochondrial oxidative phosphorylation. In a reciprocal fashion, several genes of glycolysis were down-regulated, whereas pyruvate dehydrogenase kinase 4 was markedly induced. This expression pattern was associated with decreased glucose utilization and enhanced glycogen storage. The peroxisome proliferator-activated receptors (PPARs) and PPARgamma coactivator 1alpha (PGC1alpha) are transcription regulators for the expression of metabolic and mitochondrial genes. Consistent with changes in the gene-regulatory program, calcineurin promoted the expression of PPARalpha, PPARdelta, and PPARgamma coactivator 1alpha in skeletal muscle. These results provide evidence that calcineurin-mediated skeletal muscle reprogramming induces the expression of several transcription regulators that coordinate changes in the expression of genes for lipid and glucose metabolism, which in turn alters energy substrate utilization in skeletal muscle

    Evidence for RNA-Oligonucleotides in Plant Vacuoles Isolated from Cultured Tomato Cells

    Full text link

    Idarucizumab for Dabigatran Reversal - Full Cohort Analysis.

    Get PDF
    BACKGROUND: Idarucizumab, a monoclonal antibody fragment, was developed to reverse the anticoagulant effect of dabigatran. METHODS: We performed a multicenter, prospective, open-label study to determine whether 5 g of intravenous idarucizumab would be able to reverse the anticoagulant effect of dabigatran in patients who had uncontrolled bleeding (group A) or were about to undergo an urgent procedure (group B). The primary end point was the maximum percentage reversal of the anticoagulant effect of dabigatran within 4 hours after the administration of idarucizumab, on the basis of the diluted thrombin time or ecarin clotting time. Secondary end points included the restoration of hemostasis and safety measures. RESULTS: A total of 503 patients were enrolled: 301 in group A, and 202 in group B. The median maximum percentage reversal of dabigatran was 100% (95% confidence interval, 100 to 100), on the basis of either the diluted thrombin time or the ecarin clotting time. In group A, 137 patients (45.5%) presented with gastrointestinal bleeding and 98 (32.6%) presented with intracranial hemorrhage; among the patients who could be assessed, the median time to the cessation of bleeding was 2.5 hours. In group B, the median time to the initiation of the intended procedure was 1.6 hours; periprocedural hemostasis was assessed as normal in 93.4% of the patients, mildly abnormal in 5.1%, and moderately abnormal in 1.5%. At 90 days, thrombotic events had occurred in 6.3% of the patients in group A and in 7.4% in group B, and the mortality rate was 18.8% and 18.9%, respectively. There were no serious adverse safety signals. CONCLUSIONS: In emergency situations, idarucizumab rapidly, durably, and safely reversed the anticoagulant effect of dabigatran. (Funded by Boehringer Ingelheim; RE-VERSE AD ClinicalTrials.gov number, NCT02104947 .)

    Increased hepatic insulin sensitivity in mice lacking inhibitory leptin receptor signals

    Get PDF
    Leptin regulates food intake and energy expenditure by activating the long form of the leptin receptor (LepRb). Leptin also regulates glucose homeostasis by improving whole-body insulin sensitivity, but the mechanism remains undefined. Leptin action is mediated by phosphorylation of several tyrosine residues on LepRb. LepRb-Tyr985 plays an important role in the attenuation of LepRb signaling. We determined the contribution of LepRb-Tyr985-mediated signals to leptin action on insulin sensitivity using LepRb-Tyr985 mutant mice (l/l mice). Glucose tolerance and whole-body insulin-mediated glucose utilization were determined in wild-type (+/+) and l/l mice. Glucose tolerance was unaltered between female +/+ and l/l mice but enhanced in the male l/l mice. Serum insulin concentration was decreased at baseline and 15 min after a glucose injection in female l/l vs. +/+ mice (P < 0.05) but unaltered in the male l/l mice. However, basal and insulin-stimulated glucose transport in isolated soleus and extensor digitorum longus muscle was similar between +/+ and l/l mice, indicating skeletal muscle insulin sensitivity in vitro was not enhanced. Moreover, euglycemic-hyperinsulinemic clamps reveal hepatic, rather than peripheral, insulin sensitivity is enhanced in female l/l mice, whereas male l/l mice display both improved hepatic and peripheral insulin sensitivity. In conclusion, signals emanating from leptin receptor Tyr985 control hepatic insulin sensitivity in both female and male l/l mice. Lack of LepRb-Tyr985 signaling enhances whole-body insulin sensitivity partly through increased insulin action on the suppression of hepatic glucose production

    Neuregulins mediate calcium-induced glucose transport during muscle contraction

    Full text link
    Neuregulin, a growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and exercise, neuregulins stimulate glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscle. Like muscle contraction, neuregulins have additive effects with insulin on glucose uptake. Therefore, we examined whether neuregulins are involved in the mechanism by which muscle contraction regulates glucose transport. We show that caffeine-induced increases in cytosolic Ca2+ mediate a metalloproteinase-dependent release of neuregulins, which stimulates tyrosine phosphorylation of ErbB4 receptors. Activation of ErbB4 is necessary for Ca2+-derived effects on glucose transport. Furthermore, blockage of ErbB4 abruptly impairs contraction-induced glucose uptake in slow twitch muscle fibers, and to a lesser extent, in fast twitch muscle fibers. In conclusion, we provide evidence that contraction-induced activation of neuregulin receptors is necessary for the stimulation of glucose transport and a key element of energetic metabolism during muscle contraction
    corecore