69 research outputs found

    Critical behavior of the long-range Ising chain from the largest-cluster probability distribution

    Full text link
    Monte Carlo simulations of the 1D Ising model with ferromagnetic interactions decaying with distance rr as 1/r1+σ1/r^{1+\sigma} are performed by applying the Swendsen-Wang cluster algorithm with cumulative probabilities. The critical behavior in the non-classical critical regime corresponding to 0.5<σ<10.5 <\sigma < 1 is derived from the finite-size scaling analysis of the largest cluster.Comment: 4 pages, 2 figures, in RevTeX, to appear in Phys. Rev. E (Feb 2001

    Climatic cycles recorded in the Middle Eocene hemipelagites from a Dinaric foreland basin of Istria (Croatia)

    Full text link
    Middle Eocene hemipelagic marls from the Pazin-Trieste Basin, a foreland basin of the Croatian Dinarides, display repetitive alternations of two types of marls with different resistance to weathering. This study focuses on the chemical composition, stable isotopes, and palynomorph content of these marls in order to better understand the nature of their cyclic deposition and to identify possible paleoenvironmental drivers responsible for their formation. The less resistant marls (LRM) have consistently lower carbonate content, lower δ18O and δ13C values, and more abundant dinoflagellate cysts than the more resistant marls (MRM). We interpret these differences between the two marl types to be a result of climatic variations, likely related to Milankovitch oscillations. Periods with wetter climate, associated with increased continental runoff, detrital and nutrient influx produced the LRM. Higher nutrient supply sparked higher dinoflagellate productivity during these times, while reduced salinity and stratification of the water column may have hampered the productivity of calcareous nannoplankton and/or planktonic foraminifera. In contrast, the MRM formed during dryer periods which favoured higher carbonate accumulation rates. This study provides new information about the sedimentary record of short-scale climate variations reflected in wet-dry cycles during an overall warm, greenhouse Earth

    Evidence of exactness of the mean field theory in the nonextensive regime of long-range spin models

    Full text link
    The q-state Potts model with long-range interactions that decay as 1/r^alpha subjected to an uniform magnetic field on d-dimensional lattices is analized for different values of q in the nonextensive regime (alpha between 0 and d). We also consider the two dimensional antiferromagnetic Ising model with the same type of interactions. The mean field solution and Monte Carlo calculations for the equations of state for these models are compared. We show that, using a derived scaling which properly describes the nonextensive thermodynamic behaviour, both types of calculations show an excellent agreement in all the cases here considered, except for alpha=d. These results allow us to extend to nonextensive magnetic models a previous conjecture which states that the mean field theory is exact for the Ising one.Comment: 10 pages, 4 figure

    The Information Geometry of the One-Dimensional Potts Model

    Get PDF
    In various statistical-mechanical models the introduction of a metric onto the space of parameters (e.g. the temperature variable, β\beta, and the external field variable, hh, in the case of spin models) gives an alternative perspective on the phase structure. For the one-dimensional Ising model the scalar curvature, R{\cal R}, of this metric can be calculated explicitly in the thermodynamic limit and is found to be R=1+cosh(h)/sinh2(h)+exp(4β){\cal R} = 1 + \cosh (h) / \sqrt{\sinh^2 (h) + \exp (- 4 \beta)}. This is positive definite and, for physical fields and temperatures, diverges only at the zero-temperature, zero-field ``critical point'' of the model. In this note we calculate R{\cal R} for the one-dimensional qq-state Potts model, finding an expression of the form R=A(q,β,h)+B(q,β,h)/η(q,β,h){\cal R} = A(q,\beta,h) + B (q,\beta,h)/\sqrt{\eta(q,\beta,h)}, where η(q,β,h)\eta(q,\beta,h) is the Potts analogue of sinh2(h)+exp(4β)\sinh^2 (h) + \exp (- 4 \beta). This is no longer positive definite, but once again it diverges only at the critical point in the space of real parameters. We remark, however, that a naive analytic continuation to complex field reveals a further divergence in the Ising and Potts curvatures at the Lee-Yang edge.Comment: 9 pages + 4 eps figure

    1D Potts, Yang-Lee Edges and Chaos

    Get PDF
    It is known that the (exact) renormalization transformations for the one-dimensional Ising model in field can be cast in the form of a logistic map f(x) = 4 x (1 - x) with x a function of the Ising couplings. Remarkably, the line bounding the region of chaotic behaviour in x is precisely that defining the Yang-Lee edge singularity in the Ising model. In this paper we show that the one dimensional q-state Potts model for q greater than or equal to 1 also displays such behaviour. A suitable combination of Potts couplings can again be used to define an x satisfying f(x) = 4 x (1 -x). The Yang-Lee zeroes no longer lie on the unit circle in the complex z = exp (h) plane, but their locus is still reproduced by the boundary of the chaotic region in the logistic map.Comment: 6 pages, no figure

    Criticality in one dimension with inverse square-law potentials

    Full text link
    It is demonstrated that the scaled order parameter for ferromagnetic Ising and three-state Potts chains with inverse-square interactions exhibits a universal critical jump, in analogy with the superfluid density in helium films. Renormalization-group arguments are combined with numerical simulations of systems containing up to one million lattice sites to accurately determine the critical properties of these models. In strong contrast with earlier work, compelling quantitative evidence for the Kosterlitz--Thouless-like character of the phase transition is provided.Comment: To appear in Phys. Rev. Let

    Classical phase transitions in a one-dimensional short-range spin model

    Get PDF
    Ising's solution of a classical spin model famously demonstrated the absence of a positive-temperature phase transition in one-dimensional equilibrium systems with short-range interactions. No-go arguments established that the energy cost to insert domain walls in such systems is outweighed by entropy excess so that symmetry cannot be spontaneously broken. An archetypal way around the no-go theorems is to augment interaction energy by increasing the range of interaction. Here we introduce new ways around the no-go theorems by investigating entropy depletion instead. We implement this for the Potts model with invisible states.Because spins in such a state do not interact with their surroundings, they contribute to the entropy but not the interaction energy of the system. Reducing the number of invisible states to a negative value decreases the entropy by an amount sufficient to induce a positive-temperature classical phase transition. This approach is complementary to the long-range interaction mechanism. Alternatively, subjecting positive numbers of invisible states to imaginary or complex fields can trigger such a phase transition. We also discuss potential physical realisability of such systems.Comment: 29 pages, 11 figure

    Yang-Lee Zeros of the Q-state Potts Model on Recursive Lattices

    Full text link
    The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for non-integer values of Q. Considering 1D lattice as a Bethe lattice with coordination number equal to two, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of neutral periodical points. Three different regimes for Yang-Lee zeros are found for Q>1 and 0<Q<1. An exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that Yang-Lee zeros of the Q-state Potts model on a Bethe lattice are located on arcs of circles with the radius depending on Q and temperature for Q>1. Complex magnetic field metastability regions are studied for the Q>1 and 0<Q<1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe lattice Potts models. The dynamics of metastability regions for different values of Q is studied numerically.Comment: 15 pages, 6 figures, with correction

    The Yang-Lee zeros of the 1D Blume-Capel model on connected and non-connected rings

    Full text link
    We carry out a numerical and analytic analysis of the Yang-Lee zeros of the 1D Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and non-connected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to departure from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre Polynomials.Comment: 19 pages, 5 figure
    corecore