1,385 research outputs found

    The Kinetic Interpretation of the DGLAP Equation, its Kramers-Moyal Expansion and Positivity of Helicity Distributions

    Get PDF
    According to a rederivation - due to Collins and Qiu - the DGLAP equation can be reinterpreted (in leading order) in a probabilistic way. This form of the equation has been used indirectly to prove the bound Δf(x,Q)<f(x,Q)|\Delta f(x,Q)| < f(x,Q) between polarized and unpolarized distributions, or positivity of the helicity distributions, for any QQ. We reanalize this issue by performing a detailed numerical study of the positivity bounds of the helicity distributions. To obtain the numerical solution we implement an x-space based algorithm for polarized and unpolarized distributions to next-to-leading order in αs\alpha_s, which we illustrate. We also elaborate on some of the formal properties of the Collins-Qiu form and comment on the underlying regularization, introduce a Kramers-Moyal expansion of the equation and briefly analize its Fokker-Planck approximation. These follow quite naturally once the master version is given. We illustrate this expansion both for the valence quark distribution qVq_V and for the transverse spin distribution h1h_1.Comment: 38 pages, 27 figures, Dedicated to Prof. Pierre Ramond for his 60th birthda

    Agriculture's contribution to national emissions

    Get PDF
    This info note offers an overview of the distribution of agricultural emissions among countries and the relative contribution of agriculture to national emissions. It is based on three data sources: the FAOSTAT database of greenhouse gas emissions from agriculture, United States Environmental Protection Agency (EPA) global emission estimates for 2010 and national reports to the United Nations Framework Convention on Climate Change (UNFCCC).

    Polarized parton distributions from NLO QCD analysis of world DIS and SIDIS data

    Full text link
    The combined analysis of polarized DIS and SIDIS data is performed in NLO QCD. The new parametrization on polarized PDFs is constructed. The uncertainties on PDFs and their first moments are estimated applying the modified Hessian method. The especial attention is paid to the impact of novel SIDIS data on the polarized distributions of light sea and strange quarks. In particular, the important question of polarized sea symmetry is studied in comparison with the latest results on this subject

    Interaction of small size wave packet with hadron target

    Get PDF
    We calculate in QCD the cross section for the scattering of an energetic small-size wave packet off a hadron target. We use our results to study the small-σ\sigma behaviour of Pπ(σ)P_{\pi}(\sigma), the distribution over cross section for the pion, in the leading αs\alpha_{s}-order.Comment: Revised version of the report CEBAF-TH-96-0

    Higher twists in the pion structure function

    Full text link
    We calculate the QCD moments of the pion structure function using Drell-Yan data on the quark distributions in the pion and a phenomenological model for the resonance region. The extracted higher twist corrections are found to be larger than those for the nucleon, contributing around 50% of the lowest moment at Q^2=1 GeV^2.Comment: 8 pages, 3 figures, to appear in Phys. Rev.

    Leading Chiral Contributions to the Spin Structure of the Proton

    Get PDF
    The leading chiral contributions to the quark and gluon components of the proton spin are calculated using heavy-baryon chiral perturbation theory. Similar calculations are done for the moments of the generalized parton distributions relevant to the quark and gluon angular momentum densities. These results provide useful insight about the role of pions in the spin structure of the nucleon, and can serve as a guidance for extrapolating lattice QCD calculations at large quark masses to the chiral limit.Comment: 8 pages, 2 figures; a typo in Ref. 7 correcte

    THE EFFECT OF ACUTE VOLUME CHANGES ON HEART RATE VARIABILITY

    Get PDF

    Comment on the recent COMPASS data on the spin structure function g_1

    Get PDF
    We examine the recent COMPASS data on the spin structure function g_1 singlet. We show that it is rather difficult to use the data in the present form in order to draw conclusions on the initial parton densities. However, our tentative estimate is that the data better agree with positive rather than negative initial gluon densities.Comment: 8 pages, 1 figur

    The Non-Trapping Degree of Scattering

    Full text link
    We consider classical potential scattering. If no orbit is trapped at energy E, the Hamiltonian dynamics defines an integer-valued topological degree. This can be calculated explicitly and be used for symbolic dynamics of multi-obstacle scattering. If the potential is bounded, then in the non-trapping case the boundary of Hill's Region is empty or homeomorphic to a sphere. We consider classical potential scattering. If at energy E no orbit is trapped, the Hamiltonian dynamics defines an integer-valued topological degree deg(E) < 2. This is calculated explicitly for all potentials, and exactly the integers < 2 are shown to occur for suitable potentials. The non-trapping condition is restrictive in the sense that for a bounded potential it is shown to imply that the boundary of Hill's Region in configuration space is either empty or homeomorphic to a sphere. However, in many situations one can decompose a potential into a sum of non-trapping potentials with non-trivial degree and embed symbolic dynamics of multi-obstacle scattering. This comprises a large number of earlier results, obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more detailed proofs and remark

    Cronin Effect in Hadron Production off Nuclei

    Full text link
    Recent data from RHIC for high-pTp_T hadrons in gold-gold collisions raised again the long standing problem of quantitatively understanding the Cronin effect, i.e. nuclear enhancement of high-pTp_T hadrons due to multiple interactions in nuclear matter. In nucleus-nucleus collisions this effect has to be reliably calculated as baseline for a signal of new physics in high-pTp_T hadron production. The only possibility to test models is to compare with available data for pApA collisions, however, all existing models for the Cronin effect rely on a fit to the data to be explained. We develop a phenomenological description based on the light-cone QCD-dipole approach which allows to explain available data without fitting to them and to provide predictions for pApA collisions at RHIC and LHC. We point out that the mechanism causing Cronin effect drastically changes between the energies of fixed target experiments and RHIC-LHC. High-pTp_T hadrons are produced incoherently on different nucleons at low energies, whereas the production amplitudes interfere if the energy is sufficiently high.Comment: the final version to appear in Phys. Rev. Let
    corecore