4,650 research outputs found

    Both Corticospinal and Reticulospinal Tracts Control Force of Contraction

    Get PDF
    The control of contraction strength is a key part of movement control. In primates, both corticospinal and reticulospinal cells provide input to motoneurons. Corticospinal discharge is known to correlate with force, but there are no previous reports of how reticular formation (RF) activity modulates with different contractions. Here we trained two female macaque monkeys (body weight 5.9-6.9kg) to pull a handle which could be loaded with 0.5-6kg weights, and recorded from identified pyramidal tract neurons (PTNs) in primary motor cortex and RF cells during task performance. Population-averaged firing rate increased monotonically with higher force for the RF, but showed a complex profile with little net modulation for PTNs. This reflected a more heterogeneous profile of rate modulation across the PTN population, leading to cancellation in the average. Linear discriminant analysis (LDA) classified the force based on the time course of rate modulation equally well for PTNs and RF cells. Peak firing rate had significant linear correlation with force for 43/92 (46.7%) PTNs and 21/46 (43.5%) RF cells. For almost all (20/21) RF cells the correlation coefficient was positive; similar numbers of PTNs (22 vs 21) had positive vs negative coefficients. Considering the timing of force representation, similar fractions (PTNs: 61.2%; RF cells: 55.5%) commenced coding before the onset of muscle activity. We conclude that both corticospinal and reticulospinal tracts contribute to control of contraction force; the reticulospinal tract seems to specify an overall signal simply related to force, whereas corticospinal cell activity would be better suited for fine-scale adjustments.SIGNIFICANCE STATEMENTFor the first time, we compare coding of force for corticospinal and reticular formation cells in awake behaving monkeys, over a wide range of contraction strengths likely to come close to maximum voluntary contraction. Both cortical and brainstem systems coded similarly well for force, but whereas reticular formation cells carried a simple uniform signal, corticospinal neurons were more heterogenous. This may reflect a role in gross specification of a coordinated movement, versus more fine-grained adjustments around individual joints

    Searching and Cracking: Stone Quarrying, Livelihood and the Environment in the Daglama Quarry Site in the Ho Municipality

    Get PDF
    Adequate and secure livelihoods have become a major concern for both rural and urban dwellers. In these areas, economic hardship and poor agricultural yield, following the adverse effects of climate change have compelled many people to search for alternative livelihood strategies. In the Ho Municipality, stone quarrying has become one of the alternative livelihood strategies. Stone quarrying is a form of land use method concerned with the extraction of non-fuel and non-metal minerals from rocks. Using the qualitative model, the paper interrogates the impact of stone quarrying on the livelihoods of the workers and provides critical insights into the effects of stone quarrying on the environment. It finds economic hardship, unemployment, rural-urban migration as some reasons the inhabitants engage in stone quarrying in Daglama. It further finds stone quarrying as a source of livelihood in Daglama. However, the practice has negatively affected the environment. It has led to the destruction of arable land, forest reserves and others. The paper also highlights the negative health implications stone quarrying has onthe workers in the industry

    Statistical calibration of CFD modelling for street canyon flows

    Get PDF
    CFD simulations of complex outdoor environments present a significant modelling challenge. Simulations of airflow within an idealized street canyon are performed here. We test the model sensitivity to the empirical constants contained within the κ-ε turbulence model and examine how a systematic variation of these values could produce improved prediction of the turbulent kinetic energy when compared against wind tunnel data. The Bayesian statistical calibration shows the range of values the constants should take. This results in improved CFD simulations in the region of flow inside the street canyon, which is normally very difficult to resolve accurately in CFD models

    Jet Investigations Using the Radial Moment

    Get PDF
    We define the radial moment, , for jets produced in hadron-hadron collisions. It can be used as a tool for studying, as a function of the jet transverse energy and pseudorapidity, radiation within the jet and the quality of a perturbative description of the jet shape. We also discuss how non-perturbative corrections to the jet transverse energy affect .Comment: 14 pages, LaTeX, 6 figure

    NNLO QCD corrections to event shape variables in electron positron annihilation

    Full text link
    Precision studies of QCD at electron-positron colliders are based on measurements of event shapes and jet rates. To match the high experimental accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in QCD are needed for a reliable interpretation of the data. We report the first calculation of NNLO corrections O(alpha_s^3) to three-jet production and related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics, Manchester, England 19-25 July 200

    Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles

    Full text link
    We use 3-dimensional numerical simulations of self-gravitating compressible turbulent gas in combination with Lagrangian tracer particles to investigate the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer particles are used to represent shock-compressed dense gas, which is associated with H2. We deposit tracer particles in regions of density contrast in excess of ten times the mean density. Following their trajectories and using probability distribution functions, we find an upper limit for the mixing timescale of H2, which is of order 0.3 Myr. This is significantly smaller than the lifetime of molecular clouds, which demonstrates the importance of the turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and Beyond 2007

    Allergic Mastocytic Gastroenteritis and Colitis: An Unexplained Etiology in Chronic Abdominal Pain and Gastrointestinal Dysmotility

    Get PDF
    Abdominal pain, bloating, early satiety, and changes in bowel habits are common presenting symptoms in individuals with functional GI disorders. Emerging data suggests that these symptoms may be associated with mast cell excess and/or mast cell instability in the GI tract. The aim of this retrospective study was to evaluate the contribution of mast cells to the aforementioned symptoms in individuals with a history of atopic disease. A retrospective chart review of individuals seen in a university GI practice was conducted and twenty-four subjects were identified. The majority had abdominal pain, early satiety, and nocturnal awakening. 66.7% and 37.5% had a history of environmental and/or food allergy. Solid gastric emptying was increased as were the mean number of mast cells reported on biopsies from the stomach, small bowel, and colon (>37/hpf) by CD117 staining. Mean whole blood histamine levels were uniformly elevated. This study suggests that in individuals with these characteristics, consideration should be given to staining their gastrointestinal biopsies for mast cells as this may provide them with relatively non-toxic but highly targeted treatment options. Allergic gastroenteritis and colitis may represent a third type of GI mast cell disorder along with mast cell activation syndrome and mastocytic enterocolitis

    Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism.

    Get PDF
    Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 Ma (±120.4 Myr). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used hierarchical orthologous groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO (Gene Ontology) enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation
    corecore