5,395 research outputs found

    Supporting novel home network management interfaces with Openflow and NOX

    Get PDF
    The Homework project has examined redesign of existing home network infrastructures to better support the needs and requirements of actual home users. Integrating results from several ethnographic studies, we have designed and built a home networking platform providing detailed per-flow measurement and management capabilities supporting several novel management interfaces. This demo specifically shows these new visualization and control interfaces, and describes the broader benefits of taking an integrated view of the networking infrastructure, realised through our router's augmented measurement and control APIs. Aspects of this work have been published: the Homework Database in Internet Management (IM) 2011 and implications of the ethnographic results are to appear at the SIGCOMM W-MUST workshop 2011. Separate, more detailed expositions of the interface elements and system performance and implications are currently under submission at other venues. A partial code release is already available and we anticipate fuller public beta release by Q4 2011

    The dawn

    Get PDF

    The twilight

    Get PDF

    The noonday

    Get PDF

    The prelude

    Get PDF

    The Formation and Fragmentation of Disks around Primordial Protostars

    Full text link
    The very first stars to form in the Universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between the Earth and the Sun.Comment: This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org

    The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM

    Full text link
    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of ΣGAS=10  M/pc2\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2_2 and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H2_2 is strongly suppressed. Also without self-gravity the H2_2 fraction is significantly lower (\sim 5%). Most of the volume is filled with hot gas (\sim90% within ±\pm2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas (n10  cm3n\gtrsim 10\;{\rm cm}^{-3}) and delay H2_2 formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For movies of the simulations and download of selected Flash data see the SILCC website: http://www.astro.uni-koeln.de/silc

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    Black Hole Feedback On The First Galaxies

    Get PDF
    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom

    The SILCC project: III. Regulation of star formation and outflows by stellar winds and supernovae

    Get PDF
    We study the impact of stellar winds and supernovae on the multi-phase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2^2 x ±\pm 5 kpc and a gas surface density of 10 M_{\odot}/pc2^2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters which combine the winds from indi- vidual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-)shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters which have lower average masses (102^2 - 104.3^{4.3} M_{\odot}) and form on shorter timescales (103^{-3} - 10 Myr). In particular we find an anti-correlation of cluster mass and accretion time scale. Without winds the star clusters easily grow to larger masses for ~5 Myr until the first supernova explodes. Overall the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disk (mass loading \gtrsim 1 at 1 kpc) can be launched by thermal gas pressure if more than 50% of the volume near the disc mid-plane can be heated to T > 3x105^5 K. Stellar winds alone cannot create a hot volume-filling phase. The models which are in best agreement with observed star formation rates drive either no outflows or weak outflows.Comment: 23 pages; submitted to MNRA
    corecore