21 research outputs found

    Preparation and Characterization of Cerium (III) Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Get PDF
    Indexación: Web of Science. DOAJ.In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP) were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL). The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD). The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM). Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.http://www.degruyter.com/view/j/chem.2016.14.issue-1/chem-2016-0008/chem-2016-0008.xm

    PREPARATION, IDENTIFICATION AND BIOLOGICAL PROPERTIES OF NEW FLUORIDE NANOCOMPOUNDS

    Get PDF
    Indexación: Web of Science; Scopus.Nanoparticles (NPs) of new fluoride (SrF2 and MgF2) nanocompounds were synthesized by the simple chemical method of precipitation in ethanol. Synthesis of the strontium fluoride (SrF2)-magnesium oxide (MgO) nanocomposite was achieved through the ultrasonic method. These prepared nanopowders were characterized through Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). FT-IR confirmed the purity of the synthesized fluoride NPs by evaluation of the vibrations, and UV-Visible showed the intense absorption peaks of NPs. PXRD analysis indicated the average of particle size, and SEM demonstrated a nearly spherical morphology of the NPs. The antibacterical properties of the nanopowders on Staphylococcus Aureus, Bacillus Subtilis and E. Aklay bacteria were studied, with the strongest effect by the magnesium fluoride (MgF2) NPs and the SrF2-MgO nanocomposite.http://ref.scielo.org/yfr3f

    Computational molecular characterization of the flavonoid rutin

    Get PDF
    In this work, we make use of a model chemistry within Density Functional Theory (DFT) recently presented, which is called M05-2X, to calculate the molecular structure of the flavonoid Rutin, as well as to predict the infrared (IR) and ultraviolet (UV-Vis) spectra, the dipole moment and polarizability, the free energy of solvation in different solvents as an indication of solubility, the HOMO and LUMO orbitals, and the chemical reactivity parameters that arise from Conceptual DFT. The calculated values are compared with the available experimental data for this molecule as a means of validation of the used model chemistry

    Crystallographic study and molecular orbital calculations of thiadiazole derivatives. Part 3: 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide, 3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide and 4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide

    No full text
    Single-crystal X-ray diffraction studies are reported for 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (I), 3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide(II) and 4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (III). Ab initio MO calculations on the electronic structure, conformation and reactivity of these compounds are also reported and compared with the X-ray results. A charge sensitivity analysis is performed on the results applying concepts derived from density functional theory, obtaining several sensitivity coefficients such as the molecular energy, net atomic charges, global and local hardness, global and local softness and Fukui functions. With these results and the analysis of the dipole moment and the total electron density and electrostatic potential maps, several conclusions have been inferred about the preferred sites of chemical reaction of the studied compounds. © 2001 Elsevier Science B.V. All rights reserved.Fil: Castellano, E. E.. Universidade de Sao Paulo; BrasilFil: Piro, Oscar Enrique. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; ArgentinaFil: Caram, José Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Mirifico, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Aimone, S. L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vasini, Enrique Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Márquez Lucero, A.. Centro de Investigacion En Materiales Avanzados; MéxicoFil: Glossman Mitnik, D.. Centro de Investigacion En Materiales Avanzados; Méxic

    Study of low band gap DSSCs based on bridging bithiophene and biphenyl: Theoretical investigation

    No full text
    International audienceIn this paper, theoretical study using density functional theory (DFT) method (B3LYP level with 6-31G(d,p)) of four novel low band gap acceptor-donor organic materials based on thiophene and phenyl and linked to cyanoacrylic acid as acceptor group are investigated. Different electron side groups were introduced to investigate their effects on the electronic structure; the HOMO, LUMO, gap energy, ionization potentials, electron affinities and open circuit voltage (V oc) of these compounds have been calculated and reported in this paper. The electronic absorption and emission spectra of these dyes are studied by time-dependent density functional theory calculations. A systematic theoretical study of such compound has not been reported as we know. Thus, our aim is first, to explore their electronic and spectroscopic properties on the basis of the DFT quantum chemical calculations. We think that the presented study of structural, electronic and optical properties for these compounds could help in designing more efficient functional photovoltaic organic materials. © 2015 Iranian Chemical Society
    corecore