14 research outputs found

    The Effects of Consuming White Button Mushroom Agaricus bisporus on the Brain and Liver Metabolome Using a Targeted Metabolomic Analysis

    No full text
    A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition

    The Effects of Consuming White Button Mushroom <i>Agaricus bisporus</i> on the Brain and Liver Metabolome Using a Targeted Metabolomic Analysis

    No full text
    A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition

    Flavanol-Rich Cocoa Powder Interacts with Lactobacillus rhamnossus LGG to Alter the Antibody Response to Infection with the Parasitic Nematode Ascaris suum

    No full text
    Consumption of the probiotic bacteria Lactobacillus rhamnosus LGG and flavanol-rich cocoa have purported immune modulating effects. This study compared the host response to infection with Ascaris suum in three-month-old pigs fed a standard growth diet supplemented with a vehicle control: LGG, cocoa powder (CP) or LGG + CP. Pigs were inoculated with infective A. suum eggs during Week 5 of dietary treatment and euthanized 17 days later. Lactobacillus abundance was increased in pigs fed LGG or LGG + CP. Specific anti-A. suum IgG2 antibodies were decreased (p &lt; 0.05) in LGG + CP-fed pigs compared to pigs fed CP alone. Pigs fed LGG had significantly reduced expression (p &lt; 0.05) of Eosinophil peroxidase (EPX), Interleukin 13 (IL-13), Eotaxin 3 (CCL26), Toll-like receptor 2 (TLR2), TLR4, and TLR9 and Interleukin-1Beta (IL1B) in the tracheal-bronchial lymph node (TBLN) independent of CP treatment. These results suggested that feeding LGG significantly reduced the localized prototypical Th2-related markers of infection with A. suum in the TBLN. Although feeding CP does not appear to affect the A. suum-induced Th2-associated cytokine response, feeding LGG + CP reduced anti-A. suum antibodies and delayed intestinal expulsion of parasitic larvae from the intestine

    The Effect of Dietary Mushroom <i>Agaricus bisporus</i> on Intestinal Microbiota Composition and Host Immunological Function

    No full text
    A study was designed to determine the potential prebiotic effect of dietary mushrooms on the host immune response, and intestinal microbiota composition and function. Thirty-one six-week-old pigs were fed a pig grower diet alone or supplemented with either three or six servings of freeze-dried white button (WB)-mushrooms for six weeks. Host immune response was evaluated in peripheral blood mononuclear cells (PBMC), and alveolar macrophages (AM) after stimulation with Salmonella typhymurium-Lipopolysaccharide (LPS). Isolated DNA from fecal and proximal colon contents were used for 16S rDNA taxonomic analysis and linear discriminant analysis effect size (LEfSe) to determine bacterial abundance and metabolic function. Pigs gained weight with no difference in body composition or intestinal permeability. Feeding mushrooms reduced LPS-induced IL-1&#946; gene expression in AM (P &lt; 0.05) with no change in LPS-stimulated PBMC or the intestinal mucosa transcriptome. LEfSe indicated increases in Lachnospiraceae, Ruminococcaceae within the order Clostridiales with a shift in bacterial carbohydrate metabolism and biosynthesis of secondary metabolites in the mushroom-fed pigs. These results suggested that feeding WB mushrooms significantly reduced the LPS-induced inflammatory response in AM and positively modulated the host microbiota metabolism by increasing the abundance of Clostridiales taxa that are associated with improved intestinal health

    Infection with parasitic nematodes confounds vaccination efficacy

    No full text
    T helper (Th) cells produce signature cytokine patterns, induced largely by intracellular versus extracellular pathogens that provide the cellular and molecular basis for counter regulatory expression of protective immunity during concurrent infections. The production of IL-12 and IFN-γ, for example, resulting from exposure to many bacterial, viral, and protozoan pathogens is responsible for Th1-derived protective responses that also can inhibit development of Th2-cells expressing IL-4-dependent immunity to extracellular helminth parasites and vice versa. In a similar manner, concurrent helminth infection alters optimal vaccine-induced responses in humans and livestock; however, the consequences of this condition have not been adequately studied especially in the context of a challenge infection following vaccination. Demands for new and effective vaccines to control chronic and emerging diseases, and the need for rapid deployment of vaccines for bio security concerns requires a systematic evaluation of confounding factors that limit vaccine efficacy. One common albeit overlooked confounder is the presence of gastrointestinal nematode parasites in populations of humans and livestock targeted for vaccination. This is particularly important in areas of the world were helminth infections are prevalent, but the interplay between parasites and emerging diseases that can be transmitted worldwide make this a global issue. In addition, it is not clear if the epidemic in allergic disease in industrialized countries substitutes for geohelminth infection to interfere with effective vaccination regimens. This presentation will focus on recent vaccination studies in mice experimentally infected with Heligmosomoides polygyrus to model the condition of gastrointestinal parasite infestation in mammalian populations targeted for vaccination. In addition, a large animal vaccination and challenge model against Mycoplasma hyopneumonia in swine exposed to Ascaris suum will provide a specific example of the need for further work in this area, and for controlled field studies to assess the impact of other similar scenarios. © 2007

    Infection with parasitic nematodes confounds vaccination efficacy

    No full text
    T helper (Th) cells produce signature cytokine patterns, induced largely by intracellular versus extracellular pathogens that provide the cellular and molecular basis for counter regulatory expression of protective immunity during concurrent infections. The production of IL-12 and IFN-γ, for example, resulting from exposure to many bacterial, viral, and protozoan pathogens is responsible for Th1-derived protective responses that also can inhibit development of Th2-cells expressing IL-4-dependent immunity to extracellular helminth parasites and vice versa. In a similar manner, concurrent helminth infection alters optimal vaccine-induced responses in humans and livestock; however, the consequences of this condition have not been adequately studied especially in the context of a challenge infection following vaccination. Demands for new and effective vaccines to control chronic and emerging diseases, and the need for rapid deployment of vaccines for bio security concerns requires a systematic evaluation of confounding factors that limit vaccine efficacy. One common albeit overlooked confounder is the presence of gastrointestinal nematode parasites in populations of humans and livestock targeted for vaccination. This is particularly important in areas of the world were helminth infections are prevalent, but the interplay between parasites and emerging diseases that can be transmitted worldwide make this a global issue. In addition, it is not clear if the epidemic in allergic disease in industrialized countries substitutes for geohelminth infection to interfere with effective vaccination regimens. This presentation will focus on recent vaccination studies in mice experimentally infected with Heligmosomoides polygyrus to model the condition of gastrointestinal parasite infestation in mammalian populations targeted for vaccination. In addition, a large animal vaccination and challenge model against Mycoplasma hyopneumonia in swine exposed to Ascaris suum will provide a specific example of the need for further work in this area, and for controlled field studies to assess the impact of other similar scenarios

    Evidence from different in silico, in vitro and in vivo experimental models

    No full text
    Phenolic compounds have been recognized as promising compounds for the prevention of chronic diseases, including neurodegenerative ones. However, phenolics like flavan-3-ols (F3O) are poorly absorbed along the gastrointestinal tract and structurally rearranged by gut microbiota, yielding smaller and more polar metabolites like phenyl-γ-valerolactones, phenylvaleric acids and their conjugates. The present work investigated the ability of F3O-derived metabolites to cross the blood-brain barrier (BBB), by linking five experimental models with increasing realism. First, an in silico study examined the physical-chemical characteristics of F3O metabolites to predict those most likely to cross the BBB. Some of these metabolites were then tested at physiological concentrations to cross the luminal and abluminal membranes of brain microvascular endothelial cells, cultured in vitro. Finally, three different in vivo studies in rats injected with pure 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone, and rats and pigs fed grapes or a F3O-rich cocoa extract, respectively, confirmed the presence of 5-(hydroxyphenyl)-γ-valerolactone-sulfate (3′,4′ isomer) in the brain. This work highlighted, with different experimental models, the BBB permeability of one of the main F3O-derived metabolites. It may support the neuroprotective effects of phenolic-rich foods in the frame of the “gut-brain axis”.publishersversionpublishe
    corecore