80 research outputs found

    Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    Get PDF
    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of sequential proton and iron, radiation species relevant to spaceflight. When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerts pro-osteogenic effects apart from its previously demonstrated anti-resorptive action, which may be one of the mechanisms underlying its radioprotective effect on bone. In conclusion, a diet enriched in certain types of antioxidants may be useful as an intervention for radiation-induced bone loss

    Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Get PDF
    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental factor alone implying at least some shared underlying mechanisms. Thus, both ground based and spaceflight research utilizing model organisms provide the opportunity to better understand environmental factors and biological mechanisms that contribute to human health and survival in space

    Effects of Hypogravity on Osteoblast Differentiation

    Get PDF
    Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells

    Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    Get PDF
    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and groundbased models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function

    Flying Through the Ages: Rodent Research for Human Health

    Get PDF
    As humans, we evolved, developed, grew, and now function in a continuous 1-gravity environment. Habitation in space poses unique challenges to human cells and organ systems. Biomedical research with rodents (primarily mice and rats) can help to both unravel molecular, cellular and physiologic mechanisms relevant to humans and test candidate interventions that mitigate adverse effects of space on humans, such as muscle atrophy, bone loss and cardiovascular deconditioning. One favored hypothesis that may explain the detrimental effects of spaceflight on humans is that reduced mechanical loading in microgravity accelerates aging. Rodents provide a relevant model system to study this problem as they age 40 times faster than humans. Now scientists from both public and commercial sectors conduct rodent experiments on the ISS using a new capability developed primarily at ARC. Results from the maiden voyage of the Rodent Research Project on the ISS reveal that long duration effects of spaceflight appear far different than short duration effects. Thus, Rodent Research missions on the ISS usher in a new era for exploration and biological discovery in space

    Aging and Oxidative Stress: Insights from Spaceflight

    Get PDF
    Long-term spaceflight leads to profound changes in multiple organs systems attributable to unloading and fluid shifts in microgravity. Future space explorations beyond low earth orbit will expose astronauts to space radiation, which may result in additional deficits that are not yet fully understood.The Space Life Sciences Research and Applications Division is hosting a lunch and learn briefing by Dr. Ruth Globus of the Ames Research Center. The topic is how living in space causes changes in the human body that resemble age-related diseases on earth (like osteoporosis), and how we experimentally explore coping responses.modulating the responses of bone to the challenges of spaceflight. This presentation will highlight how knowledge from studies on fundamental bone biology can inform the design of intervention strategies against spaceflight-induced bone loss

    Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Get PDF
    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal)

    Tissue Preservation Assessment Preliminary Results

    Get PDF
    Pre-flight groundbased testing done to prepare for the first Rodent Research mission validation flight, RR1 (Choi et al, 2016 PlosOne). We purified RNA and measured RIN values to assess quality of the samples. For protein, we measured liver enzyme activities. We tested protocol and methods of preservation to date. Here we present an overview of results related to tissue preservation from the RR1 validation mission and a summary of findings to date from investigators who received RR1 teissues various Biospecimen Sharing Program

    Rodent Research-1 Validation of Rodent Hardware

    Get PDF
    To achieve novel science objectives, validation of a rodent habitat on ISS will enable - In-flight analyses during long duration spaceflight- Use of genetically altered animals- Application of modern analytical techniques (e.g. genomics, proteomics, and metabolomics

    Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    Get PDF
    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold. Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state
    • …
    corecore