138 research outputs found
Flow-Based Synthesis of Gold-Coated Magnetic Nanoparticles for Magnetoplasmonic Sensing Applications
Gold-coated magnetic nanoparticles are key materials for the fast separation and ultrasensitive detection of analytes in magnetoplasmonic sensors. However, the synthesis of gold-coated magnetic nanoparticles typically requires small-scale, colloidal methods over hours or days and often results in incomplete shells with variable optical properties. A robust, rapid, and scalable synthesis method is still needed to reliably form a complete gold nanoshell around magnetic nanoparticles. Herein, a new methodology for the synthesis of gold-coated magnetic nanoparticles via a flow-based manufacturing system that can easily be scaled up is presented. The developed method first produces gold-seeded silica coated magnetic nanoparticles and then a complete, tunable gold shell with relatively uniform size and shape. The flow-based method can be performed in a total time of less than 2 min, enabling rapid and complete gold coating. The particles show both excellent magnetic and plasmonic properties, which facilitates application as biosensing agents in dark-field microscopy and surface-enhanced Raman scattering
Economic imaginaries of the Anti-biosis : between ‘economies of resistance’ and the ‘resistance of economies’
This paper seeks reports on the way economic principles, formulae and discourse inform biological research on antimicrobial resistance (AMR) in the life sciences. AMR, it can be argued, has become the basis for performing certain forms of ‘economic imaginary’. Economic imaginaries are ways of projecting and materially restructuring economic and political orders through motifs, metaphors, images and practices. The paper contributes to critical social science and humanities research on the socio-economic underpinning of biological discourse. The performance of economy in this context can be seen to follow two key trajectories. The first trajectory, discussed at length in this paper, might be described as ‘economies of resistance’. Here the language of market economics structures and frames microbiological explanations of bacterial resistance. This can be illustrated through, for example, biological theories of ‘genetic capitalism’ where capitalism itself is seen to furnish microbial life with modes of economic behaviour and conduct. ‘Economies of resistance’ are evidence of the naturalisation of socio-economic structures in expert understandings of AMR. The methodological basis of this paper lies in a historical genealogical investigation into the use of economic and market principles in contemporary microbiology. The paper reports on a corpus of published academic sources identified through the use of keywords, terms, expressions and metaphors linked to market economics. Search terms included, but were not limited to: ‘trade-off’, ‘investment’, ‘market/s’, ‘investment’, ‘competition’, ‘cooperation’, ‘economy’, ‘capital/ism’, ‘socialist/ism’, etc. ‘Economies of resistance’ complements a second distinct trajectory that can be seen to flow in the opposite direction from biology to economic politics (the ‘resistance of economies’). Here, economic imaginaries of microbial life are redeployed in large-scale debates about the nature of economic life, about the future of the welfare state, industrial strategy, and about the politics of migration and race, etc. ‘Economies of resistance’ and the ‘resistance of economies’ are not unrelated but, instead, they are mutually constituting dynamics in the co-production of AMR. In attempting to better understand this co-production, the paper draws upon literatures on the biopolitics of immunity in political philosophy and Science and Technology Studies (STS)
Observations of Closed Magnetic Flux Embedded in the Lobes During Periods of Northward IMF
The high latitude, lobe regions of the magnetosphere are often assumed to contain cool, low energy plasma populations. However, during periods of northward Interplanetary Magnetic Field, energetic plasma populations have occasionally been observed. We present three cases when Cluster observed uncharacteristically “hot” plasma populations in the lobe. For two of the three events, we present simultaneous observations of the plasma sheet observed by Double Star. The similarity between the plasma in the lobe and the plasma sheet suggests that the mechanism that produces plasma at high latitudes is likely to be tail reconnection, resulting in a trapped “wedge” of closed flux about the noon-midnight meridian. Complementary images from Imager for Magnetopause to Aurora Global Exploration and DMSP/Special Sensor Ultraviolet Spectrographic Imager show that transpolar arcs, which form in each event in at least one hemisphere, directly intersect the footprint of the Cluster spacecraft in all three events. The intersection of the Cluster footprint with the transpolar arcs is synchronous with the observation of the energetic plasma populations in the lobe. This further supports the conclusion that it is likely this energetic plasma observed in the high latitude lobe regions of magnetosphere is on closed field lines
Risks to pollinators and pollination from invasive alien species
Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making
Molecular interactions at the surface of extracellular vesicles
Extracellular vesicles such as exosomes, microvesicles, apoptotic bodies, and large oncosomes have been shown to participate in a wide variety of biological processes and are currently under intense investigation in many different fields of biomedicine. One of the key features of extracellular vesicles is that they have relatively large surface compared to their volume. Some extracellular vesicle surface molecules are shared with those of the plasma membrane of the releasing cell, while other molecules are characteristic for extracellular vesicular surfaces. Besides proteins, lipids, glycans, and nucleic acids are also players of extracellular vesicle surface interactions. Being secreted and present in high number in biological samples, collectively extracellular vesicles represent a uniquely large interactive surface area which can establish contacts both with cells and with molecules in the extracellular microenvironment. Here, we provide a brief overview of known components of the extracellular vesicle surface interactome and highlight some already established roles of the extracellular vesicle surface interactions in different biological processes in health and disease
- …