17 research outputs found

    Muon Collider Physics Summary

    Get PDF
    The perspective of designing muon colliders with high energy and luminosity,which is being investigated by the International Muon Collider Collaboration,has triggered a growing interest in their physics reach. We present a concisesummary of the muon colliders potential to explore new physics, leveraging onthe unique possibility of combining high available energy with very precisemeasurements.<br

    Muon Collider Physics Summary

    Get PDF
    The perspective of designing muon colliders with high energy and luminosity,which is being investigated by the International Muon Collider Collaboration,has triggered a growing interest in their physics reach. We present a concisesummary of the muon colliders potential to explore new physics, leveraging onthe unique possibility of combining high available energy with very precisemeasurements.<br

    The physics case of a 3 TeV muon collider stage

    Get PDF
    In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent gg-2 and BB-physics anomalies, which are both related with muons.<br

    The physics case of a 3 TeV muon collider stage

    Get PDF
    In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent gg-2 and BB-physics anomalies, which are both related with muons.<br

    Towards a muon collider

    Get PDF

    Toward an Alternative 'Time of the Revolution'? Beyond State Contestation in the struggle for a new Syrian Everyday

    No full text
    The convoluted relationship between the state and citizens in conflict-ridden Syria often has been reduced to a binary of dissent and consent. Challenging these simplistic categorizations, this article analyzes how state mechanisms resonate in the everyday lives of Syrians since the beginning of the crisis. Drawing on ethnographic insights from Syrian refugees in Lebanon and Syrian Kurds in northeastern Syria, this article shows how state, society and political opposition function as relational processes. Then, it identifies the limitations of contemporary strategies of everyday political contestation through the theory of Syrian intellectual ‘Omar ‘Aziz’s ‘time of the revolution.

    Simulated Detector Performance at the Muon Collider

    No full text
    In this paper we report on the current status of studies on the expected performance for a detector designed to operate in a muon collider environment. Beam-induced backgrounds (BIB) represent the main challenge in the design of the detector and the event reconstruction algorithms. The current detector design aims to show that satisfactory performance can be achieved, while further optimizations are expected to significantly improve the overall performance. We present the characterization of the expected beam-induced background, describe the detector design and software used for detailed event simulations taking into account BIB effects. The expected performance of charged-particle reconstruction, jets, electrons, photons and muons is discussed, including an initial study on heavy-flavor jet tagging. A simple method to measure the delivered luminosity is also described. Overall, the proposed design and reconstruction algorithms can successfully reconstruct the high transverse-momentum objects needed to carry out a broad physics program

    Simulated Detector Performance at the Muon Collider

    No full text
    In this paper we report on the current status of studies on the expected performance for a detector designed to operate in a muon collider environment. Beam-induced backgrounds (BIB) represent the main challenge in the design of the detector and the event reconstruction algorithms. The current detector design aims to show that satisfactory performance can be achieved, while further optimizations are expected to significantly improve the overall performance. We present the characterization of the expected beam-induced background, describe the detector design and software used for detailed event simulations taking into account BIB effects. The expected performance of charged-particle reconstruction, jets, electrons, photons and muons is discussed, including an initial study on heavy-flavor jet tagging. A simple method to measure the delivered luminosity is also described. Overall, the proposed design and reconstruction algorithms can successfully reconstruct the high transverse-momentum objects needed to carry out a broad physics program

    Simulated Detector Performance at the Muon Collider

    No full text
    In this paper we report on the current status of studies on the expected performance for a detector designed to operate in a muon collider environment. Beam-induced backgrounds (BIB) represent the main challenge in the design of the detector and the event reconstruction algorithms. The current detector design aims to show that satisfactory performance can be achieved, while further optimizations are expected to significantly improve the overall performance. We present the characterization of the expected beam-induced background, describe the detector design and software used for detailed event simulations taking into account BIB effects. The expected performance of charged-particle reconstruction, jets, electrons, photons and muons is discussed, including an initial study on heavy-flavor jet tagging. A simple method to measure the delivered luminosity is also described. Overall, the proposed design and reconstruction algorithms can successfully reconstruct the high transverse-momentum objects needed to carry out a broad physics program
    corecore