191 research outputs found

    The transcription factor XBP-1 is essential for the development and survival of dendritic cells

    Get PDF
    Dendritic cells (DCs) play a critical role in the initiation, maintenance, and resolution of an immune response. DC survival is tightly controlled by extracellular stimuli such as cytokines and Toll-like receptor (TLR) signaling, but the intracellular events that translate such extracellular stimuli into life or death for the DC remain poorly understood. The endoplasmic reticulum (ER) stress, or unfolded protein response (UPR), is a signaling pathway that is activated when unfolded proteins accumulate in the ER. The most conserved arm of the UPR involves IRE1Ξ±, an ER transmembrane kinase and endoribonuclease that activates the transcription factor XBP-1 to maintain ER homeostasis and prevent activation of cell death pathways caused by sustained ER stress. We report that XBP-1 is essential for DC development and survival. Lymphoid chimeras lacking XBP-1 possessed decreased numbers of both conventional and plasmacytoid DCs with reduced survival both at baseline and in response to TLR signaling. Overexpression of XBP-1 in hematopoietic progenitors rescued and enhanced DC development. Remarkably, in contrast to other cell types we have examined, the XBP-1 pathway was constitutively activated in immature DCs

    It's a Good Year for Blimp-1 (and Plasma Cells)

    Get PDF
    AbstractImmunoglobulin secreting plasma cells are critical mediators of an effective humoral immune response. In this issue of Immunity, an article by Shapiro-Shelef et al. defines an essential role for the transcription factor Blimp-1 in plasma cell differentiation and preplasma memory B cell formation

    Schnurri-3 (KRC) Interacts with c-Jun to Regulate the IL-2 Gene in T Cells

    Get PDF
    The activator protein 1 (AP-1) transcription factor is a key participant in the control of T cell proliferation, cytokine production, and effector function. In the immune system, AP-1 activity is highest in T cells, suggesting that a subset of T cell–specific coactivator proteins exist to selectively potentiate AP-1 function. Here, we describe that the expression of Schnurri-3, also known as ΞΊ recognition component (KRC), is induced upon T cell receptor signaling in T cells and functions to regulate the expression of the interleukin 2 (IL-2) gene. Overexpression of KRC in transformed and primary T cells leads to increased IL-2 production, whereas dominant-negative KRC, or loss of KRC protein in KRC-null mice, results in diminished IL-2 production. KRC physically associates with the c-Jun transcription factor and serves as a coactivator to augment AP-1–dependent IL-2 gene transcription

    Annual review of immunology

    Get PDF

    A lipopolysaccharide-induced DNA-binding protein for a class II gene in B cells is distinct from NF-kappa B

    Get PDF
    Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant decrease in mRNA encoding the Ia proteins which persists for at least 18 h. Within the upstream regulatory region of A alpha k, an NF-kappa B-like binding site is present. We have identified an LPS-induced DNA-binding protein in extracts from athymic mice whose spleens consist predominantly of B cells. Binding activity is present in low levels in unstimulated spleen cells and is increased by LPS treatment. This protein binds to two sites in a regulatory region of the Ia A alpha k gene, one of which contains the NF-kappa B-like binding site. DNA fragments containing these sites cross-compete for protein binding. Analysis by DNase I footprinting identified a target binding sequence, named the LPS-responsive element. Although this target sequence contains an NF-kappa B-like binding site, competition with a mutant oligonucleotide demonstrated that bases critical for NF-kappa B binding are not required for binding of the LPS-inducible protein. Therefore, we hypothesized that this inducible protein represents a new mediator of LPS action, distinct from NF-kappa B, and may be one mechanism to account for the decrease in mRNA encoding the Ia proteins

    XBP-1 specifically promotes IgM synthesis and secretion, but is dispensable for degradation of glycoproteins in primary B cells

    Get PDF
    Differentiation of B cells into plasma cells requires X-box binding protein–1 (XBP-1). In the absence of XBP-1, B cells develop normally, but very little immunoglobulin is secreted. XBP-1 controls the expression of a large set of genes whose products participate in expansion of the endoplasmic reticulum (ER) and in protein trafficking. We define a new role for XBP-1 in exerting selective translational control over high and sustained levels of immunoglobulin M (IgM) synthesis. XBP-1βˆ’/βˆ’ and XBP-1+/+ primary B cells synthesize IgM at comparable levels at the onset of stimulation with lipopolysaccharide or CpG. However, later there is a profound depression in synthesis of IgM in XBP-1βˆ’/βˆ’ B cells, notwithstanding similar levels of ΞΌmRNA. In marked contrast, lack of XBP-1 does not affect synthesis and trafficking of other glycoproteins, or of immunoglobulin light chains. Contrary to expectation, degradation of proteins from the ER, using TCRΞ± or US11-mediated degradation of class I major histocompatibility complex molecules as substrates, is normal in XBP-1βˆ’/βˆ’ B cells. Furthermore, degradation of membrane ΞΌ was unaffected by enforced expression of XBP-1. We conclude that in primary B cells, the XBP-1 pathway promotes synthesis and secretion of IgM, but does not seem to be involved in the degradation of ER proteins, including that of ΞΌ chains themselves

    The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Get PDF
    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor
    • …
    corecore