428 research outputs found

    Operating Hydrogen-Based Energy Storage Systems in Wind Farms for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control

    Get PDF
    Smooth power injection is one of the possible services that modern wind farms could provide in the not-so-far future, for which energy storage is required. Indeed, this is one among the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Implementing Agreement (HIA) within the Task 24 final report, that may promote their integration into the main grid, in particular when paired to hydrogen-based energy storages. In general, energy storage can mitigate the inherent unpredictability of wind generation, providing that they are deployed with appropriate control algorithms. On the contrary, in the case of no storage, wind farm operations would be strongly affected, as well as their economic performances since the penalty fees wind farm owners/operators incur in case of mismatches between the contracted power and that actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates a Hydrogen-based Energy Storage System (HESS), consisting of one electrolyzer, one fuel cell and one tank, paired to a wind farm committed to smooth power injection into the grid. The MPC relies on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage their advanced features and handles appropriate cost functions in order to account for the operating costs, the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively affect the expected profits generated by the injection of smooth power. Numerical simulations are conducted by considering wind generation profiles from a real wind farm in the center-south of Italy and spot prices according to the corresponding market zone. The results show the impact of each cost term on the performances of the controller and how they can be effectively combined in order to achieve some reasonable trade-off. In particular, it is highlighted that a static choice of the corresponding weights can lead to not very effective handling of the effects given by the combination of the system conditions with the various exogenous’, while a dynamic choice may suit the purpose instead. Moreover, the simulations show that the developed models and the set-up mathematical program can be fruitfully leveraged for inferring indications on the devices’ sizing.publishedVersio

    Representation mitosis in wide neural networks

    Full text link
    Deep neural networks (DNNs) defy the classical bias-variance trade-off: adding parameters to a DNN that interpolates its training data will typically improve its generalization performance. Explaining the mechanism behind this ``benign overfitting'' in deep networks remains an outstanding challenge. Here, we study the last hidden layer representations of various state-of-the-art convolutional neural networks and find evidence for an underlying mechanism that we call "representation mitosis": if the last hidden representation is wide enough, its neurons tend to split into groups which carry identical information, and differ from each other only by a statistically independent noise. Like in a mitosis process, the number of such groups, or ``clones'', increases linearly with the width of the layer, but only if the width is above a critical value. We show that a key ingredient to activate mitosis is continuing the training process until the training error is zero

    Intrinsic dimension estimation for discrete metrics

    Full text link
    Real world-datasets characterized by discrete features are ubiquitous: from categorical surveys to clinical questionnaires, from unweighted networks to DNA sequences. Nevertheless, the most common unsupervised dimensional reduction methods are designed for continuous spaces, and their use for discrete spaces can lead to errors and biases. In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces. We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting, finding a surprisingly small ID, of order 2. This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.Comment: RevTeX4.2, 13 pages, 10 figure

    Compact atomic descriptors enable accurate predictions via linear models

    Get PDF
    We probe the accuracy of linear ridge regression employing a three-body local density representation derived from the atomic cluster expansion. We benchmark the accuracy of this framework in the prediction of formation energies and atomic forces in molecules and solids. We find that such a simple regression framework performs on par with state-of-the-art machine learning methods which are, in most cases, more complex and more computationally demanding. Subsequently, we look for ways to sparsify the descriptor and further improve the computational efficiency of the method. To this aim, we use both principal component analysis and least absolute shrinkage operator regression for energy fitting on six single-element datasets. Both methods highlight the possibility of constructing a descriptor that is four times smaller than the original with a similar or even improved accuracy. Furthermore, we find that the reduced descriptors share a sizable fraction of their features across the six independent datasets, hinting at the possibility of designing material-agnostic, optimally compressed, and accurate descriptors

    Enabling QM-accurate simulation of dislocation motion in γ−Ni and α−Fe using a hybrid multiscale approach

    Get PDF
    We present an extension of the ‘learn on the fly’ method to the study of the motion of dislocations in metallic systems, developed with the aim of producing information-efficient force models that can be systematically validated against reference QM calculations. Nye tensor analysis is used to dynamically track the quantum region centered at the core of a dislocation, thus enabling quantum mechanics/molecular mechanics simulations. The technique is used to study the motion of screw dislocations in Ni-Al systems, relevant to plastic deformation in Ni-based alloys, at a variety of temperature/strain conditions. These simulations reveal only a moderate spacing ( ∼ 5 Å ) between Shockley partial dislocations, at variance with the predictions of traditional molecular dynamics (MD) simulation using interatomic potentials, which yields a much larger spacing in the high stress regime. The discrepancy can be rationalized in terms of the elastic properties of an hcp crystal, which influence the behavior of the stacking fault region between Shockley partial dislocations. The transferability of this technique to more challenging systems is addressed, focusing on the expected accuracy of such calculations. The bcc α − Fe phase is a prime example, as its magnetic properties at the open surfaces make it particularly challenging for embedding-based QM/MM techniques. Our tests reveal that high accuracy can still be obtained at the core of a dislocation, albeit at a significant computational cost for fully converged results. However, we find this cost can be reduced by using a machine learning approach to progressively reduce the rate of expensive QM calculations required during the dynamical simulations, as the size of the QM database increases

    Ocaso do poder jesuítico na Amazônia

    Get PDF
    O presente artigo analisa os aspectos essenciais do processo que determinou a expulsão da Companhia de Jesus do estado do Grão-Pará e Maranhão. As reformas pombalinas, em meados do século XVIII, recrudesceram as relações comerciais entre colônia e metrópole e deram início à laicização da política portuguesa no reino e em seus domínios ultramarinos. No Grão-Pará, a inadequação da tradicional influência jesuítica às novas reformulações estruturais pensadas pela Coroa, que culminaram na expulsão da ordem, ficou elucidada no período da gestão do governador Mendonça Furtado (1751-1759)

    A nonlinear model predictive control strategy for autonomous racing of scale vehicles

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksA Nonlinear Model Predictive Control (NMPC) strategy aimed at controlling a small-scale car model for autonomous racing competitions is presented in this paper. The proposed control strategy is concerned with minimizing the lap time while keeping the vehicle within track boundaries. The optimization problem considers both the vehicle's actuation limits and the lateral and longitudinal forces acting on the car modeled through the Pacejka's magic formula and a simple drivetrain model. Furthermore, the approach allows to safely race on a track populated by static obstacles generating collision-free trajectories and tracking them while enhancing the lap timing performance. Gazebo simulations using the F1/10 simulator showcase the feasibility and validity of the proposed control strategy. The code is released as open-source making it possible to replicate the obtained results.Peer ReviewedPostprint (author's final draft
    • …
    corecore