101 research outputs found
In vitro antimicrobial activity and cytotoxicity of nickel(II) complexes with different diamine ligands
Three diamines, 1,3-propanediamine (1,3-pd), 2,2-dimethyl-1,3-propanediamine (2,2-diMe-1,3-pd) and (+/-)-1,3-pentanediamine (1,3-pnd), were used for the synthesis of nickel(II) complexes 1-3, respectively, of the general formula [Ni(L)(2)(H2O)(2)]Cl-2. The stoichiometries of the complexes were confirmed by elemental microanalysis, and their structures were elucidated by spectroscopic (UV-Vis and IR) and molar conductivity measurements. The complexes 1-3, along with NiCl2 center dot 6H(2)O and the diamine ligands, were evaluated against a panel of microbial strains that are associated with skin, wound, urinary tract and nosocomial infections. The obtained results revealed no significant activity of 1-3 against the investigated bacterial strains. On the other hand, they showed good antifungal activity against pathogenic Candida strains, with minimum inhibitory concentration (MIC) values in the range from 15.6 to 62.5 mu g mL(-1). The best anti-Candida activity was observed for complex 2 against C. parapsilosis, while the least susceptible to the effect of the complexes was C. krusei. The antiproliferative effect on normal human lung fibro-blast cell line MRC-5 was also evaluated in order to determine the therapeutic potential of nickel(II) complexes 1-3. These complexes showed lower negative effects on the viability of the MRC-5 cell line than the clinically used nystatin and comparable selectivity indexes to that of this antifungal drug
Effects of methimazole-induced hypothyroidism on immunohistochemical, stereomorphometric and some ultrastructural characteristics of pancreatic β-cells
The function of pancreatic β-cells is to produce and secrete insulin, a crucial hormone in carbohydrate metabolism. The transcription factor PDX1 is required for insulin gene transcription and mature β-cell function. Since this factor is regulated by triiodothyronine, a disturbance in insulin biosynthesis and/or secretion is usually related to a deficiency of this hormone. In the present study, we used methods of immunohistochemistry, stereology and electron microscopy to explore the correlation between altered thyroid status and insulin synthesis/secretion in a model of methimazole-induced hypothyroidism in rats. In hypothyroid animals fewer functional PDX1-positive β-cells were detected in the islets of Langerhans, while insulin immunostaining was stronger. Stereological analysis of β-cell granules revealed more numerous immature insulin granules in hypothyroid rats. Taken together, these data suggest that the applied treatment caused impaired insulin synthesis and secretion. Rare cells with granules characteristic for both α- and β-cells observed in hypothyroid animals could provide functional compensation for diminished insulin synthesis
Copper(II) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa
Five copper(II) complexes 1-5 with aromatic nitrogen-containing heterocycles, pyrimidine (pm, 1), pyrazine (pz, 2), quinazoline (qz, 3 and 4) and phthalazine (phtz, 5) have been synthesized and structurally characterized by spectroscopic and single-crystal X-ray diffraction techniques. The crystallographic results show that, dependent on the ligand structure, complexes 1-5 are of different nuclearity. The antimicrobial efficiency of complexes 1-5 has been evaluated against three clinically relevant microorganisms and none of the complexes showed significant growth inhibiting activity, with values of minimum inhibitory concentrations (MIC) in the mM range. Since in many bacteria, pathogenicity and virulence are regulated by intercellular communication processes, quorum sensing (QS), the effect of the copper(II) complexes on bacterial QS has also been examined. The results indicate that the investigated complexes inhibit violacein production in Chromobacterium violaceum CV026, suggesting an anti-QS activity. In order to differentiate, which of the QS pathways was affected by the copper(II) complexes, three biosensor strains were used: the PAO1 Delta rhlIpKD-rhlA and the PA14-R3 Delta lasIPrsaI lux strain to directly measure the levels of C4-HSL (N-butanoyl-homoserine lactone) and 3OC12-HSL (N-3-oxo-dodecanoyl- homoserine lactone), respectively, and PAO1 Delta pqsA mini-CTX luxPpqsA for the detection of AHQs (2-alkyl-4-quinolones). Complexes 1-5 were shown to be efficient inhibitors of biofilm formation of the human opportunistic pathogen Pseudomonas aeruginosa PAO1, with the qz-containing complex 3 being the most active. Finally, the most anti-QS-active complexes 1 and 3 showed synergistic activity against a multi-drug resistant clinical isolate of P. aeruginosa, when supplied in combination with the known antibiotics piperacillin and ceftazidime
Supplementary data for the article: Glišić, B. Đ.; Nikodinovic-Runic, J.; Ilic-Tomic, T.; Wadepohl, H.; Veselinović, A.; Opsenica, I. M.; Djuran, M. I. Synthesis, Cytotoxic Activity and DNA-Binding Properties of Copper(II) Complexes with Terpyridine. Polyhedron 2018, 139, 313–322. https://doi.org/10.1016/j.poly.2017.11.008
Supplementary material for: [https://doi.org/10.1016/j.poly.2017.11.008]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2581
Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains
Five silver(I) complexes with aromatic nitrogen-containing heterocycles, phthalazine (phtz) and quinazoline (qz), were synthesized, characterized and analyzed by single-crystal X-ray diffraction analysis. Although different AgX salts reacted with phtz, only dinuclear silver(I) complexes of the general formula {[Ag(X-O)(phtz-N)](2)(mu-phtz-N,N')(2)} were formed, X = NO3- (1), CF3SO3- (2) and ClO4- (3). However, reactions of qz with an equimolar amount of AgCF3SO3 and AgBF4 resulted in the formation of polynuclear complexes, {[Ag(CF3SO3-O)(qz-N)](2)}(n) (4) and {[Ag(qz-N)][BF4]}(n) (5). Complexes 1-5 were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. The obtained results indicate that all tested silver(I) complexes have good antibacterial activity with MIC (minimum inhibitory concentration) values in the range from 2.9 to 48.0 mu M against the investigated strains. Among the investigated strains, these complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.9-29 mu M) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. On the other hand, their activity against the fungus Candida albicans was moderate. In order to determine the therapeutic potential of silver(I) complexes 1-5, their antiproliferative effect on the human lung fibroblastic cell line MRC5, has been also evaluated. The binding of complexes 1-5 to the genomic DNA of P. aeruginosa was demonstrated by gel electrophoresis techniques and well supported by molecular docking into the DNA minor groove. All investigated complexes showed an improved cytotoxicity profile in comparison to the clinically used AgNO3.This is the peer reviewed version of the paper: Glisić, B., Šenerović, L., Comba, P., Wadepohl, H., Veselinović, A., Milivojević, D., Djuran, M. I.,& Nikodinović-Runić, J.. (2016). Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains. in Journal of Inorganic Biochemistry
Elsevier Science Inc, New York., 155, 115-128.
[https://doi.org/10.1016/j.jinorgbio.2015.11.026
Supplementary data for article: Warzajtis, B.; Glišić, B. D.; Savić, N. D.; Pavic, A.; Vojnovic, S.; Veselinović, A.; Nikodinovic-Runic, J.; Rychlewska, U.; Djuran, M. I. Mononuclear Gold(Iii) Complexes with l-Histidine-Containing Dipeptides: Tuning the Structural and Biological Properties by Variation of the N-Terminal Amino Acid and Counter Anion. Dalton Transactions 2017, 46 (8), 2594–2608. https://doi.org/10.1039/c6dt04862e
Supplementary material for: [https://doi.org/10.1039/c6dt04862e]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2429]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3107
A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture
Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections
Supplementary data for the article: Savić, N. D.; Milivojevic, D. R.; Glišić, B. D.; Ilic-Tomic, T.; Veselinovic, J.; Pavic, A.; Vasiljevic, B.; Nikodinovic-Runic, J.; Djuran, M. I. A Comparative Antimicrobial and Toxicological Study of Gold(III) and Silver(i) Complexes with Aromatic Nitrogen-Containing Heterocycles: Synergistic Activity and Improved Selectivity Index of Au(III)/Ag(i) Complexes Mixture. RSC Advances 2016, 6 (16), 13193–13206. https://doi.org/10.1039/c5ra26002g
Supplementary material for: [https://doi.org/10.1039/c5ra26002g]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2041
A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture
Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3334
Supplementary data for the article: Andrejević, T. P.; Nikolić, A. M.; Glišić, B. Đ.; Wadepohl, H.; Vojnovic, S.; Zlatović, M.; Petković, M.; Nikodinovic-Runic, J.; Opsenica, I. M.; Djuran, M. I. Synthesis, Structural Characterization and Antimicrobial Activity of Silver(I) Complexes with 1-Benzyl-1H-Tetrazoles. Polyhedron 2018, 154, 325–333. https://doi.org/10.1016/j.poly.2018.08.001
Supplementary data for: [https://doi.org/10.1016/j.poly.2018.08.001]Research data for this article: [https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc2046ft&sid=DataCite]Research data for this article: [https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/ccdc.csd.cc2046gv&sid=DataCite]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2228]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2991
- …