7 research outputs found

    Complex Langevin simulation of a random matrix model at nonzero chemical potential

    Get PDF
    In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature

    Properties of the QCD thermal transition with Nf=2+1 flavors of Wilson quark

    Get PDF
    We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations with Nf=2+1 flavors of Wilson fermion. Observables are compared for two values of the pion mass, focusing on chiral properties. Results are presented for the Polyakov loop, various susceptibilities, the chiral condensate and its susceptibility, and the onset of parity doubling in the light and strange baryonic sector
    corecore