5 research outputs found

    No Effects of Cognitive Remediation on Cerebral White Matter in Individuals at Ultra-High Risk for Psychosis-A Randomized Clinical Trial

    Get PDF
    Background: Individuals at ultra-high risk for psychosis (UHR) present with subtle alterations in cerebral white matter (WM), which appear to be associated with clinical and functional outcome. The effect of cognitive remediation on WM organization in UHR individuals has not been investigated previously. Methods: In a randomized, clinical trial, UHR individuals aged 18 to 40 years were assigned to treatment as usual (TAU) or TAU plus cognitive remediation for 20 weeks. Cognitive remediation comprised 20 x 2-h sessions of neurocognitive and social-cognitive training. Primary outcome was whole brain fractional anisotropy derived from diffusion weighted imaging, statistically tested as an interaction between timepoint and treatment group. Secondary outcomes were restricted to five predefined region of interest (ROI) analyses on fractional anisotropy, axial diffusivity, radial diffusivity and mean diffusivity. For significant timepoint and treatment group interactions within these five ROIs, we explored associations between longitudinal changes in WM and cognitive functions/clinical symptoms. Finally, we explored dose-response effects of cognitive remediation on WM. Results: A total of 111 UHR individuals were included. Attrition-rate was 26%. The cognitive remediation group completed on average 12 h of neurocognitive training, which was considerably lower than per protocol. We found no effect of cognitive remediation on whole-brain FA when compared to treatment as usual. Secondary ROI analyses revealed a nominal significant interaction between timepoint*treatment of AD in left medial lemniscus (P=0.016) which did not survive control for multiple comparisons. The exploratory test showed that this change in AD correlated to improvements of mental flexibility in the cognitive remediation group (p=0.001). We found no dose-response effect of neurocognitive training on WM. Conclusions: Cognitive remediation comprising 12 h of neurocognitive training on average did not improve global or regional WM organization in UHR individuals. Further investigations of duration and intensity of cognitive training as necessary prerequisites of neuroplasticity-based changes are warranted. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02098408

    A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naive schizophrenia patients based on multimodal neuropsychiatric data

    Get PDF
    The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naĂŻve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naĂŻve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available

    Association of Adverse Outcomes With Emotion Processing and Its Neural Substrate in Individuals at Clinical High Risk for Psychosis

    Get PDF
    Importance: The development of adverse clinical outcomes in patients with psychosis has been associated with behavioral and neuroanatomical deficits related to emotion processing. However, the association between alterations in brain regions subserving emotion processing and clinical outcomes remains unclear. Objective: To examine the association between alterations in emotion processing and regional gray matter volumes in individuals at clinical high risk (CHR) for psychosis, and the association with subsequent clinical outcomes. Design, Setting, and Participants: This naturalistic case-control study with clinical follow-up at 12 months was conducted from July 1, 2010, to August 31, 2016, and collected data from 9 psychosis early detection centers (Amsterdam, Basel, Cologne, Copenhagen, London, Melbourne, Paris, The Hague, and Vienna). Participants (213 individuals at CHR and 52 healthy controls) were enrolled in the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) project. Data were analyzed from October 1, 2018, to April 24, 2019. Main Measures and Outcomes: Emotion recognition was assessed with the Degraded Facial Affect Recognition Task. Three-Tesla magnetic resonance imaging scans were acquired from all participants, and gray matter volume was measured in regions of interest (medial prefrontal cortex, amygdala, hippocampus, and insula). Clinical outcomes at 12 months were evaluated for transition to psychosis using the Comprehensive Assessment of At-Risk Mental States criteria, and the level of overall functioning was measured through the Global Assessment of Functioning [GAF] scale. Results: A total of 213 individuals at CHR (105 women [49.3%]; mean [SD] age, 22.9 [4.7] years) and 52 healthy controls (25 women [48.1%]; mean [SD] age, 23.3 [4.0] years) were included in the study at baseline. At the follow-up within 2 years of baseline, 44 individuals at CHR (20.7%) had developed psychosis and 169 (79.3%) had not. Of the individuals at CHR reinterviewed with the GAF, 39 (30.0%) showed good overall functioning (GAF score, ≥65), whereas 91 (70.0%) had poor overall functioning (GAF score, <65). Within the CHR sample, better anger recognition at baseline was associated with worse functional outcome (odds ratio [OR], 0.88; 95% CI, 0.78-0.99; P = .03). In individuals at CHR with a good functional outcome, positive associations were found between anger recognition and hippocampal volume (ze = 3.91; familywise error [FWE] P = .02) and between fear recognition and medial prefrontal cortex volume (z = 3.60; FWE P = .02), compared with participants with a poor outcome. The onset of psychosis was not associated with baseline emotion recognition performance (neutral OR, 0.93; 95% CI, 0.79-1.09; P = .37; happy OR, 1.03; 95% CI, 0.84-1.25; P = .81; fear OR, 0.98; 95% CI, 0.85-1.13; P = .77; anger OR, 1.00; 95% CI, 0.89-1.12; P = .96). No difference was observed in the association between performance and regional gray matter volumes in individuals at CHR who developed or did not develop psychosis (FWE P < .05). Conclusions and Relevance: In this study, poor functional outcome in individuals at CHR was found to be associated with baseline abnormalities in recognizing negative emotion. This finding has potential implications for the stratification of individuals at CHR and suggests that interventions that target socioemotional processing may improve functional outcomes

    World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, Part 2: Long-term treatment of schizophrenia

    No full text
    corecore