37 research outputs found

    Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

    Get PDF
    Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    MR imaging of the fetal brain

    Get PDF
    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research

    Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results

    No full text
    Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging

    Metastatic Diffuse Intrinsic Pontine Glioma to the Peritoneal Cavity Via Ventriculoperitoneal Shunt: Case Report and Literature Review.

    No full text
    Extraneural metastatic disease resulting from a primary central nervous system neoplasm is a rare clinical finding in the pediatric population. We report a case of peritoneal glioblastoma carcinomatosis following placement of a ventriculoperitoneal shunt
    corecore