5 research outputs found

    Supernova hydrodynamics experiments on the Nova laser

    Full text link
    In studying complex astrophysical phenomena such as supernovae, one does not have the luxury of setting up clean, well-controlled experiments in the universe to test the physics of current models and theories. Consequently, creating a surrogate environment to serve as an experimental astrophysics testbed would be highly beneficial. The existence of highly sophisticated, modern research lasers, developed largely as a result of the world-wide effort in inertial confinement fusion, opens a new potential for creating just such an experimental testbed utilizing well-controlled, well-diagnosed laser-produced plasmas. Two areas of physics critical to an understanding of supernovae are discussed that are amenable to supporting research on large lasers: (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69962/2/PHPAEN-4-5-1994-1.pd

    Laser experiments to simulate supernova remnants

    Full text link
    An experiment using a large laser facility to simulate young supernova remnants (SNRs) is discussed. By analogy to the SNR, the laboratory system includes dense matter that explodes, expansion and cooling to produce energetic, flowing plasma, and the production of shock waves in lower-density surrounding matter. The scaling to SNRs in general and to SN1987A in particular is reviewed. The methods and results of x-ray radiography, by which the system in diagnosed, are discussed. The data show that the hohlraum used to provide the energy for explosion does so in two ways—first, through its radiation pulse, and second, through an additional impulse that is attributed to stagnation pressure. Attempts to model these dynamics are discussed. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69889/2/PHPAEN-7-5-2142-1.pd

    Supernova hydrodynamics experiments on Nova

    Full text link
    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed. We discuss additional experiments possible with ultra-high-intensity lasers. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87451/2/551_1.pd

    Observation of collapsing radiative shocks in laboratory experiments

    Full text link
    This article reports the observation of the dense, collapsed layer produced by a radiative shock in a laboratory experiment. The experiment uses laser irradiation to accelerate a thin layer of solid-density material to above 100 km/s100km∕s, the first to probe such high velocities in a radiative shock. The layer in turn drives a shock wave through a cylindrical volume of Xe gas (at ∼ 6 mg/cm3∼6mg∕cm3). Radiation from the shocked Xe removes enough energy that the shocked layer increases in density and collapses spatially. This type of system is relevant to a number of astrophysical contexts, providing the potential to observe phenomena of interest to astrophysics and to test astrophysical computer codes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87760/2/082901_1.pd

    Late-time hohlraum pressure dynamics in supernova remnant experiments

    Full text link
    It is shown that laser driven hohlraums obtain significant internal pressures which affect the hydrodynamics of high-energy density shock-tube experiments. By incorporating this previously neglected hohlraum pressure effect (in addition to the usual x-ray drive) into computer simulations which model the NOVA laser driven supernova remnant experiment [R. P. Drake, S. G. Glendinning, K. Estabrook, B. A. Remington, R. McCray, R. J. Williams, L. J. Suter, T. B. Smith, J. J. Carroll III, R. A. London, and E. Liang, Phys. Rev. Lett. 81, 2068 (1998)], calculations are able to reproduce the observed structure of hydrodynamic features. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69466/2/PHPAEN-8-6-2609-1.pd
    corecore