1,069 research outputs found

    Anomalous scaling of mesoscale tropospheric humidity fluctuations

    Get PDF
    Water vapor fluctuations are measured and analyzed at an unprecedented 10-m resolution throughout the troposphere. Computation of structure functions shows that specific humidity variations observed by research aircraft over the Pacific Ocean exhibit anomalous scaling from about 50 m to 100 km in horizontal range. The scaling laws show different characteristics for the marine boundary layer, the tropical free troposphere, and the extratropical free troposphere. More specifically, boundary-layer humidity fluctuations are less smooth and more stationary than those in the free troposphere, while the extratropical free tropospheric variations are less intermittent than those in the other two regions. The anomalous scaling results argue against passive advection by a spatially smooth flow (chaotic advection) at these scales.United States. National Aeronautics and Space Administration (Grant NAG1-2173)United States. National Aeronautics and Space Administration (Grant NAG1-1901

    Habitual Behavior Is Mediated by a Shift in Response-Outcome Encoding by Infralimbic Cortex

    Get PDF
    The ability to flexibly switch between goal-directed actions and habits is critical for adaptive behavior. The infralimbic prefrontal cortex (IfL-C) has been consistently identified as a crucial structure for the regulation of response strategies. To investigate the role of the IfL-C, the present study employed two validated reinforcement schedules that either promote habits or goal-directed actions in mice. The results reveal that information about action-outcome relationships is differentially encoded in the IfL-C during actions and habits as evidenced by encoding of behavioral outcomes during goal-directed actions that is lost during habits. Optogenetic inhibition of the IfL-C selectively at press during habitual behavior (when firing rates are reduced during unreinforced goal-directed actions) resulted in restoration of sensitivity to change of action-outcome contingency. These results reveal a novel functional mechanism by which IfL-C promotes habitual behavior, and provide insight into strategies for the treatment and prevention of pathological, inflexible behavior common in neuropsychiatric illness

    Examining the Role of Mood Patterns in Predicting Self-reported Depressive Symptoms

    Get PDF
    Depression is the leading cause of disability worldwide. Initial efforts to detect depression signals from social media posts have shown promising results. Given the high internal validity, results from such analyses are potentially beneficial to clinical judgment. The existing models for automatic detection of depressive symptoms learn proxy diagnostic signals from social media data, such as help-seeking behavior for mental health or medication names. However, in reality, individuals with depression typically experience depressed mood, loss of pleasure nearly in all the activities, feeling of worthlessness or guilt, and diminished ability to think. Therefore, a lot of the proxy signals used in these models lack the theoretical underpinnings for depressive symptoms. It is also reported that social media posts from many patients in the clinical setting do not contain these signals. Based on this research gap, we propose to monitor a type of signal that is well-established as a class of symptoms in affective disorders -- mood. The mood is an experience of feeling that can last for hours, days, or even weeks. In this work, we attempt to enrich current technology for detecting symptoms of potential depression by constructing a 'mood profile' for social media users.Comment: Accepted at The Web Science Conference 202

    The Lantern Vol. 11, No. 1, December 1942

    Get PDF
    • Friends of the Aquarium • Espionage • Fuss-Budget • Dress Blues • Alone • One Easy Lesson in How Not to Study • A Thumbtack Sketch • One Star • A Colonial Inn • Thoughts on a Dark Day • Query • Paul Revere and the World He Lived In • Sunsetshttps://digitalcommons.ursinus.edu/lantern/1028/thumbnail.jp

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    Scattering of dipole-mode vector solitons: Theory and experiment

    Full text link
    We study, both theoretically and experimentally, the scattering properties of optical dipole-mode vector solitons - radially asymmetric composite self-trapped optical beams. First, we analyze the soliton collisions in an isotropic two-component model with a saturable nonlinearity and demonstrate that in many cases the scattering dynamics of the dipole-mode solitons allows us to classify them as ``molecules of light'' - extremely robust spatially localized objects which survive a wide range of interactions and display many properties of composite states with a rotational degree of freedom. Next, we study the composite solitons in an anisotropic nonlinear model that describes photorefractive nonlinearities, and also present a number of experimental verifications of our analysis.Comment: 8 pages + 4 pages of figure

    Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets

    Get PDF
    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid−solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid−solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in micro fluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, Δε/γLF. This relationship is experimentally confirmed for 11 liquid−air and liquid−liquid combinations with Δε/γLF having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid−liquid interfacial tensions

    Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology

    Get PDF
    Aircraft-based meteorological and chemical measurements from NASA's Pacific Exploratory Missions provide a suitable database for studying the climatology of horizontal wavenumber spectra in the troposphere overlying an ocean. The wavenumber spectra of trace gas and meteorological quantities aid in identifying the physical processes producing atmospheric structures as well as provide diagnostics for general circulation models. Flight segments were distributed over altitudes ranging from about ∼50 m to 13 km and 70°S to 60°N in latitude. The spectra were averaged according to altitude and latitude regions. The wavelength range covered was typically ∼0.5–100 km. Quantities processed in this way were horizontal velocity, potential temperature, specific humidity, and the mixing ratios of ozone, methane, carbon monoxide, and carbon dioxide. Spectral power and slope (in log-log coordinates) corresponding to the wavelength regime of 6–60 km were tabulated for those measured quantities. The spectral slopes of horizontal velocity and potential temperature were generally close to −5/3 with no transition to a steeper slope at short wavelengths as seen in some other studies. Spectral slopes of the tracer species also ranged around −5/3. This agreement in form of the dynamical and tracer spectra is consistent with both the gravity-wave advection and quasi two-dimensional turbulence models. In the upper troposphere the spectral power for all quantities except specific humidity tended to be greater at latitudes higher than 30° compared to latitudes lower than 30°. This latitudinal trend confirms the earlier results of the Global Atmospheric Sampling Program.United States. National Aeronautics and Space Administration (Grant NAG1-1758)United States. National Aeronautics and Space Administration (Grant NAG1-1901

    Observation of dipole-mode vector solitons

    Full text link
    We report on the first experimental observation of a novel type of optical vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit
    • …
    corecore