57 research outputs found

    Abundant phosphorus expected for possible life in Enceladus’s ocean

    Get PDF
    Saturn’s moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean–seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42−), and total dissolved inorganic P could reach 10−7 to 10−2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10−10 mol/kg H2O from previous estimates and close to or higher than ∼10−6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus’s ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability

    Measurement of D/H and 13C/12C Ratios in Methane Ice on Eris and Makemake: Evidence for Internal Activity

    Full text link
    James Webb Space Telescope's NIRSpec infrared imaging spectrometer observed the outer solar system dwarf planets Eris and Makemake in reflected sunlight at wavelengths spanning 1 through 5 microns. Both objects have high albedo surfaces that are rich in methane ice, with a texture that permits long optical path lengths through the ice for solar photons. There is evidence for N2 ice absorption around 4.2 um on Eris, though not on Makemake. No CO ice absorption is seen at 4.67 um on either body. For the first time, absorption bands of two heavy isotopologues of methane are observed at 2.615 um (13CH4), 4.33 um (12CH3D), and 4.57 um (12CH3D). These bands enable us to measure D/H ratios of (2.5 +/- 0.5) x 10-4 and (2.9 +/- 0.6) x 10-4, along with 13C/12C ratios of 0.012 +/- 0.002 and 0.010 +/- 0.003 in the surface methane ices of Eris and Makemake, respectively. The measured D/H ratios are much lower than that of presumably primordial methane in comet 67P/Churyumov-Gerasimenko, but they are similar to D/H ratios in water in many comets and larger outer solar system objects. This similarity suggests that the hydrogen atoms in methane on Eris and Makemake originated from water, indicative of geochemical processes in past or even ongoing hot environments in their deep interiors. The 13C/12C ratios are consistent with commonly observed solar system values, suggesting no substantial enrichment in 13C as could happen if the methane currently on their surfaces was the residue of a much larger inventory that had mostly been lost to space. Possible explanations include geologically recent outgassing from the interiors as well as processes that cycle the surface methane inventory to keep the uppermost surfaces refreshed

    Moderate D/H Ratios in Methane Ice on Eris and Makemake as Evidence of Hydrothermal or Metamorphic Processes in Their Interiors: Geochemical Analysis

    Full text link
    Dwarf planets Eris and Makemake have surfaces bearing methane ice of unknown origin. D/H ratios were recently determined from James Webb Space Telescope (JWST) observations of Eris and Makemake (Grundy et al., submitted), giving us new clues to decipher the origin of methane. Here, we develop geochemical models to test if the origin of methane could be primordial, derived from CO2_2 or CO ("abiotic"), or sourced by organics ("thermogenic"). We find that primordial methane is inconsistent with the observational data, whereas both abiotic and thermogenic methane can have D/H ratios that overlap the observed ranges. This suggests that Eris and Makemake either never acquired a significant amount of methane during their formation, or their original inventories were removed and then replaced by a source of internally produced methane. Because producing abiotic or thermogenic methane likely requires temperatures in excess of ~150{\deg}C, we infer that Eris and Makemake have rocky cores that underwent substantial radiogenic heating. Their cores may still be warm/hot enough to produce methane. This heating could have driven hydrothermal circulation at the bottom of an ice-covered ocean to generate abiotic methane, and/or metamorphic reactions involving accreted organic matter could have occurred in response to heating in the deeper interior, generating thermogenic methane. Additional analyses of thermal evolution model results and predictions from modeling of D-H exchange in the solar nebula support our findings of elevated subsurface temperatures and a lack of primordial methane on Eris and Makemake. It remains an open question whether their D/H ratios may have evolved subsequent to methane outgassing. Recommendations are given for future activities to further test proposed scenarios of abiotic and thermogenic methane production on Eris and Makemake, and to explore these worlds up close.Comment: Submitted to Icarus, 29 pages, 5 figures, 1 tabl

    The Apollo ATCA Platform

    Full text link
    We have developed a novel and generic open-source platform - Apollo - which simplifies the design of custom Advanced Telecommunications Computing Architecture (ATCA) blades by factoring the design into generic infrastructure and application-specific parts. The Apollo "Service Module" provides the required ATCA Intelligent Platform Management Controller, power entry and conditioning, a powerful system-on-module (SoM) computer, and flexible clock and communications infrastructure. The Apollo "Command Module" is customized for each application and typically includes two large field-programmable gate arrays, several hundred optical fiber interfaces operating at speeds up to 28 Gbps, memories, and other supporting infrastructure. The command and service module boards can be operated together or independently on the bench without need for an ATCA shelf.Comment: Submitted to the Proceedings for TWEPP 201

    JWST molecular mapping and characterization of Enceladus' water plume feeding its torus

    Full text link
    Enceladus is a prime target in the search for life in our solar system, having an active plume likely connected to a large liquid water subsurface ocean. Using the sensitive NIRSpec instrument onboard JWST, we searched for organic compounds and characterized the plume's composition and structure. The observations directly sample the fluorescence emissions of H2O and reveal an extraordinarily extensive plume (up to 10,000 km or 40 Enceladus radii) at cryogenic temperatures (25 K) embedded in a large bath of emission originating from Enceladus' torus. Intriguingly, the observed outgassing rate (300 kg/s) is similar to that derived from close-up observations with Cassini 15 years ago, and the torus density is consistent with previous spatially unresolved measurements with Herschel 13 years ago, suggesting that the vigor of gas eruption from Enceladus has been relatively stable over decadal timescales. This level of activity is sufficient to maintain a derived column density of 4.5x1017 m-2 for the embedding equatorial torus, and establishes Enceladus as the prime source of water across the Saturnian system. We performed searches for several non-water gases (CO2, CO, CH4, C2H6, CH3OH), but none were identified in the spectra. On the surface of the trailing hemisphere, we observe strong H2O ice features, including its crystalline form, yet we do not recover CO2, CO nor NH3 ice signatures from these observations. As we prepare to send new spacecraft into the outer solar system, these observations demonstrate the unique ability of JWST in providing critical support to the exploration of distant icy bodies and cryovolcanic plumes.Comment: Accepted for publication in Nature Astronomy on May 17th 202

    Planned geological investigations of the Europa Clipper mission

    Get PDF
    Geological investigations planned for the Europa Clipper mission will examine the formation, evolution, and expression of geomorphic structures found on the surface. Understanding geologic features, their formation, and any recent activity are key inputs in constraining Europa’s potential for habitability. In addition to providing information about the moon’s habitability, the geologic study of Europa is compelling in and of itself. Here we provide a high-level, cross-instrument, and cross-discipline overview of the geologic investigations planned within the Europa Clipper mission. Europa’s fascinating collection of ice-focused geology provides an unparalleled opportunity to investigate the dynamics of icy shells, ice-ocean exchange processes, and global-scale tectonic and tidal stresses. We present an overview of what is currently known about the geology of Europa, from global to local scales, highlighting outstanding issues and open questions, and detailing how the Europa Clipper mission will address them. We describe the mission’s strategy for searching for and characterizing current activity in the form of possible active plumes, thermal anomalies, evidence for surface changes, and extremely fresh surface exposures. The complementary and synergistic nature of the data sets from the various instruments and their integration will be key to significantly advancing our understanding of Europa’s geology
    • …
    corecore