Dwarf planets Eris and Makemake have surfaces bearing methane ice of unknown
origin. D/H ratios were recently determined from James Webb Space Telescope
(JWST) observations of Eris and Makemake (Grundy et al., submitted), giving us
new clues to decipher the origin of methane. Here, we develop geochemical
models to test if the origin of methane could be primordial, derived from
CO2​ or CO ("abiotic"), or sourced by organics ("thermogenic"). We find that
primordial methane is inconsistent with the observational data, whereas both
abiotic and thermogenic methane can have D/H ratios that overlap the observed
ranges. This suggests that Eris and Makemake either never acquired a
significant amount of methane during their formation, or their original
inventories were removed and then replaced by a source of internally produced
methane. Because producing abiotic or thermogenic methane likely requires
temperatures in excess of ~150{\deg}C, we infer that Eris and Makemake have
rocky cores that underwent substantial radiogenic heating. Their cores may
still be warm/hot enough to produce methane. This heating could have driven
hydrothermal circulation at the bottom of an ice-covered ocean to generate
abiotic methane, and/or metamorphic reactions involving accreted organic matter
could have occurred in response to heating in the deeper interior, generating
thermogenic methane. Additional analyses of thermal evolution model results and
predictions from modeling of D-H exchange in the solar nebula support our
findings of elevated subsurface temperatures and a lack of primordial methane
on Eris and Makemake. It remains an open question whether their D/H ratios may
have evolved subsequent to methane outgassing. Recommendations are given for
future activities to further test proposed scenarios of abiotic and thermogenic
methane production on Eris and Makemake, and to explore these worlds up close.Comment: Submitted to Icarus, 29 pages, 5 figures, 1 tabl