53 research outputs found

    Effect of a regular consumption of traditional and roasted oat and barley flakes on blood lipids and glucose metabolism–A randomized crossover trial

    Get PDF
    Background Regular consumption of the soluble dietary fiber β-glucan is associated with decreased total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and blood glucose. Barley and oat flakes as natural sources of β-glucan were roasted to improve sensory quality. The aim of this study was to investigate whether roasting of barley and oat flakes changes the physiological impact of the β-glucan-rich flakes on glucose and lipid metabolism. Method A five-armed randomized crossover trial design was used. The intervention study was conducted from May 2018 to May 2019 and included 32 healthy subjects with moderately increased LDL cholesterol (≥2.5 mmol/L). During the 3-week intervention periods, 80 g of roasted or traditional barley or oat flakes, or four slices of white toast bread per day were consumed for breakfast. At the start and the end of each intervention, fasting and postprandial blood was taken. The intervention periods were separated by 3-week wash-out periods. Results During the interventions with the cereal flakes, TC and LDL cholesterol concentrations were significantly reduced compared to baseline values by mean differences of 0.27–0.33 mmol/L and 0.21–0.30 mmol/L, respectively ( p < 0.05), while high-density lipoprotein (HDL) cholesterol was only reduced after the intervention with barley flakes ( p < 0.05). After the intervention period with toast, TC and HDL cholesterol increased ( p < 0.05). The fasting levels of triglycerides, fasting blood glucose and insulin did not change in any group. The effects of traditional and roasted varieties on blood lipids did not differ between the groups. Conclusion The regular consumption of traditional or roasted barley and oat flakes contributes to the management of cardiovascular diseases by improving TC and LDL cholesterol. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03648112 , identifier NCT03648112

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Habitual Intakes, Food Sources and Excretions of Phosphorus and Calcium in Three German Study Collectives

    No full text
    Phosphorus intake in Europe is far above recommendations. We present baseline data from three human intervention studies between 2006 and 2014 regarding intake and excretion of phosphorus and calcium. All subjects documented their nutritional habits in weighed dietary records. Fasting blood samples were drawn, and feces and urine were quantitatively collected. Dietary phosphorus intake was estimated based on weighed dietary records and urine phosphorus excretions. Food sources were identified by allocation to defined food product groups. Average phosphorus consumption was 1338 mg/day and did not change from 2006 to 2014, while calcium intake decreased during this period (1150 to 895 mg/day). The main sources for phosphorus intake were bread/cereal products, milk/milk products and meat/meat products/sausage products and the main sources of calcium intake included milk/milk products/cheese, bread/cereal products and beverages. There was no difference between estimated phosphorus intake from the weighed dietary records and urine phosphorus excretion. In conclusion, we demonstrated constant phosphorus intakes far above the recommendations and decreasing calcium intakes below the recommendations in three German collectives from 2006 to 2014. Furthermore, we could show in case of usual intakes that an estimated phosphorus intake from urine phosphorus excretion is similar to the calculated intake from weighed dietary records

    Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX

    No full text
    Copper oxide nanoparticles (CuO-NP) are increasingly used in consumer-related products, which may result in increased oral ingestion. Digestion of particles can change their physicochemical properties and toxicity. Therefore, our aim was to simulate the gastrointestinal tract using a static in vitro digestion model. Toxic properties of digested and undigested CuO-NP were compared using an epithelial mono-culture (Caco-2) and a mucus-secreting co-culture model (Caco-2/HT29-MTX). Effects on intestinal barrier integrity, permeability, cell viability and apoptosis were analyzed. CuO-NP concentrations of 1, 10 and 100 µg mL−1 were used. Particle characterization by dynamic light scattering and transmission electron microscopy showed similar mean particle sizes before and after digestion, resulting in comparable delivered particle doses in vitro. Only slight effects on barrier integrity and cell viability were detected for 100 µg mL−1 CuO-NP, while the ion control CuCl2 always caused significantly higher adverse effects. The utilized cell models were not significantly different. In summary, undigested and digested CuO-NP show comparable effects on the mono-/co-cultures, which are weaker than those of copper ions. Only in the highest concentration, CuO-NP showed weak effects on barrier integrity and cell viability. Nevertheless, a slightly increased apoptosis rate indicates existing cellular stress, which gives reason for further investigations
    corecore