164 research outputs found
Effects of resistance training on depression and cardiovascular disease risk in black men: Protocol for a randomized controlled trial
Background
Depression is severely undertreated in Black men. This is primarily because Black men are less likely to seek traditional psychiatric treatment, have less access and more barriers to treatment, and perceive more stigma associated with treatment. Depression contributes to cardiovascular disease (CVD), and Black men have the highest rate of mortality from CVD. Resistance training (RT) can have beneficial effects on both depression and CVD. This study will be the first randomized controlled trial to test the effects of RT on depression and cardiovascular health in a sample of depressed Black men.
Method
Fifty Black men with clinically significant symptoms of depression will be randomized to either (a) a 12-week RT or (b) an attention control group. Behavioral Activation techniques will be used to support adherence to home-based RT goals. Both groups will meet on-site twice/week during the 12-week program, and follow-up assessments will occur at the end-of-treatment and 3 months post-treatment. Qualitative interviews will be conducted after the 3-month follow-up. The objectives of this study are (1) to assess the feasibility and acceptability of recruitment, retention, and intervention procedures, (2) to obtain preliminary evidence of efficacy, and (3) to explore potential mediators of the effects of RT on depression.
Discussion
This study will advance the field of minority men\u27s health by producing new data on the effects of RT for depression, the potential mechanisms of action that may support its use, and its effects on markers of CVD risk in Black men
Quantum advantage by relational queries about physically realizable equivalence classes
Relational quantum queries are sometimes capable to effectively decide
between collections of mutually exclusive elementary cases without completely
resolving and determining those individual instances. Thereby the set of
mutually exclusive elementary cases is effectively partitioned into equivalence
classes pertinent to the respective query. In the second part of the paper, we
review recent progress in theoretical certifications (relative to the
assumptions made) of quantum value indeterminacy as a means to build quantum
oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran,
Iran, April 22-25, 201
Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen \u3ci\u3eErwinia Tracheiphila\u3c/i\u3e
Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche
Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells
During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals
Ultrafast Radiographic Imaging and Tracking: An overview of instruments, methods, data, and applications
Ultrafast radiographic imaging and tracking (U-RadIT) use state-of-the-art
ionizing particle and light sources to experimentally study sub-nanosecond
dynamic processes in physics, chemistry, biology, geology, materials science
and other fields. These processes, fundamental to nuclear fusion energy,
advanced manufacturing, green transportation and others, often involve one mole
or more atoms, and thus are challenging to compute by using the first
principles of quantum physics or other forward models. One of the central
problems in U-RadIT is to optimize information yield through, e.g.
high-luminosity X-ray and particle sources, efficient imaging and tracking
detectors, novel methods to collect data, and large-bandwidth online and
offline data processing, regulated by the underlying physics, statistics, and
computing power. We review and highlight recent progress in: a.) Detectors; b.)
U-RadIT modalities; c.) Data and algorithms; and d.) Applications.
Hardware-centric approaches to U-RadIT optimization are constrained by detector
material properties, low signal-to-noise ratio, high cost and long development
cycles of critical hardware components such as ASICs. Interpretation of
experimental data, including comparisons with forward models, is frequently
hindered by sparse measurements, model and measurement uncertainties, and
noise. Alternatively, U-RadIT makes increasing use of data science and machine
learning algorithms, including experimental implementations of compressed
sensing. Machine learning and artificial intelligence approaches, refined by
physics and materials information, may also contribute significantly to data
interpretation, uncertainty quantification and U-RadIT optimization.Comment: 51 pages, 31 figures; Overview of ultrafast radiographic imaging and
tracking as a part of ULITIMA 2023 conference, Mar. 13-16,2023, Menlo Park,
CA, US
The Australian multidomain approach to reduce dementia risk by protecting brain health with lifestyle intervention study (AU-ARROW): A study protocol for a single-blind, multi-site, randomized controlled trial
INTRODUCTION: The Finnish Geriatric Intervention Study (FINGER) led to the global dementia risk reduction initiative: World-Wide FINGERS (WW-FINGERS). As part of WW-FINGERS, the Australian AU-ARROW study mirrors aspects of FINGER, as well as US-POINTER. METHOD: AU-ARROW is a randomized, single-blind, multisite, 2-year clinical trial (n = 600; aged 55–79). The multimodal lifestyle intervention group will engage in aerobic exercise, resistance training and stretching, dietary advice to encourage MIND diet adherence, BrainHQ cognitive training, and medical monitoring and health education. The Health Education and Coaching group will receive occasional health education sessions. The primary outcome measure is the change in a global composite cognitive score. Extra value will emanate from blood biomarker analysis, positron emission tomography (PET) imaging, brain magnetic resonance imaging (MRI), and retinal biomarker tests. DISCUSSION: The finalized AU-ARROW protocol is expected to allow development of an evidence-based innovative treatment plan to reduce cognitive decline and dementia risk, and effective transfer of research outcomes into Australian health policy. Highlights: Study protocol for a single-blind, randomized controlled trial, the AU-ARROW Study. The AU-ARROW Study is a member of the World-Wide FINGERS (WW-FINGERS) initiative. AU-ARROW\u27s primary outcome measure is change in a global composite cognitive score. Extra significance from amyloid PET imaging, brain MRI, and retinal biomarker tests. Leading to development of an innovative treatment plan to reduce cognitive decline
KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients
The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology
VANG-1 and PRKL-1 Cooperate to Negatively Regulate Neurite Formation in Caenorhabditis elegans
Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1– and dsh-1–dependent manner. Our findings suggest a novel role for a PCP–like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation
Mineral Detection of Neutrinos and Dark Matter 2024. Proceedings
The second "Mineral Detection of Neutrinos and Dark Matter" (MDvDM'24)
meeting was held January 8-11, 2024 in Arlington, VA, USA, hosted by Virginia
Tech's Center for Neutrino Physics. This document collects contributions from
this workshop, providing an overview of activities in the field. MDvDM'24 was
the second topical workshop dedicated to the emerging field of mineral
detection of neutrinos and dark matter, following a meeting hosted by IFPU in
Trieste, Italy in October 2022. Mineral detectors have been proposed for a wide
variety of applications, including searching for dark matter, measuring various
fluxes of astrophysical neutrinos over gigayear timescales, monitoring nuclear
reactors, and nuclear disarmament protocols; both as paleo-detectors using
natural minerals that could have recorded the traces of nuclear recoils for
timescales as long as a billion years and as detectors recording nuclear recoil
events on laboratory timescales using natural or artificial minerals.
Contributions to this proceedings discuss the vast physics potential, the
progress in experimental studies, and the numerous challenges lying ahead on
the path towards mineral detection. These include a better understanding of the
formation and annealing of recoil defects in crystals; identifying the best
classes of minerals and, for paleo-detectors, understanding their geology;
modeling and control of the relevant backgrounds; developing, combining, and
scaling up imaging and data analysis techniques; and many others. During the
last years, MDvDM has grown rapidly and gained attention. Small-scale
experimental efforts focused on establishing various microscopic readout
techniques are underway at institutions in North America, Europe and Asia. We
are looking ahead to an exciting future full of challenges to overcome,
surprises to be encountered, and discoveries lying ahead of us.Comment: Summary and proceedings of the MDvDM'24 conference, Jan 8-11 202
- …