6 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The ecology of chytrids in aquatic ecosystems: roles in food web dynamics

    No full text
    International audienceChytrids are very important components of freshwater ecosystems, but the ecological significance of this group of fungi is not well understood. This review considers some of the significant environmental factors affecting growth and population composition of chytrids in aquatic habitats. The physical factors include primarily salinity, dissolved oxygen concentration and temperature. The biological factors include the role of chytrids as saprobes and parasites and methods of dispersal of propagules throughout the ecosystem. Dispersal depends upon both zoospores for short range and whole thalli for long range dispersal. Five roles for chytrids in food-web dynamics are proposed: (1) chytrid zoospores are a good food source for zooplankton, (2) chytrids decompose particulate organic matter, (3) chytrids are parasites of aquatic plants, (4) chytrids are parasites of aquatic animals and (5) chytrids convert inorganic compounds into organic compounds. New molecular methods for analysis of chytrid diversity in aquatic environments have the potential to provide accurate quantitative data necessary for better understanding of ecological processes in aquatic ecosystems

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore