15 research outputs found

    Carbohydrate Antigen 125: A Biomarker at the Crossroads of Congestion and Inflammation in Heart Failure

    Get PDF
    Because heart failure (HF) is more lethal than some of the common malignancies in the general population, such as prostate cancer in men and breast cancer in women, there is a need for a cost-effective prognostic biomarker in HF beyond natriuretic peptides, especially concerning congestion, the most common reason for the hospitalisation of patients with worsening of HF. Furthermore, despite diuretics being the mainstay of treatment for volume overload in HF patients, no randomised trials have shown the mortality benefits of diuretics in HF patients, and appropriate diuretic titration strategies in this population are unclear. Recently, carbohydrate antigen (CA) 125, a well-established marker of ovarian cancer, emerged as both a prognostic indicator and a guide in tailoring decongestion therapy for patients with HF. Hence, in this review the authors present the molecular background regarding the role of CA125 in HF and address valuable clinical aspects regarding the relationship of CA125 with both prognosis and therapeutic management in HF

    Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers

    No full text
    Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF

    Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers

    No full text
    Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF

    Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study

    No full text
    The role of catestatin (CST) in acutely decompensated heart failure (ADHF) and myocardial infarction (MI) is poorly elucidated. Due to the implicated role of CST in the regulation of neurohumoral activity, the goals of the study were to determine CST serum levels among ninety consecutively enrolled ADHF patients, with respect to the MI history and left ventricular ejection fraction (LVEF) and to examine its association with clinical, echocardiographic, and laboratory parameters. CST levels were higher among ADHF patients with MI history, compared to those without (8.94 ± 6.39 vs. 4.90 ± 2.74 ng/mL, p = 0.001). CST serum levels did not differ among patients with reduced, midrange, and preserved LVEF (7.74 ± 5.64 vs. 5.75 ± 4.19 vs. 5.35 ± 2.77 ng/mL, p = 0.143, respectively). In the multivariable linear regression analysis, CST independently correlated with the NYHA class (β = 0.491, p < 0.001), waist-to-hip ratio (WHR) (β = −0.237, p = 0.026), HbA1c (β = −0.235, p = 0.027), LDL (β = −0.231, p = 0.029), non-HDL cholesterol (β = −0.237, p = 0.026), hs-cTnI (β = −0.221, p = 0.030), and the admission and resting heart rate (β = −0.201, p = 0.036 and β = −0.242, p = 0.030), and was in positive association with most echocardiographic parameters. In conclusion, CST levels were increased in ADHF patients with MI and were overall associated with a favorable cardiometabolic profile but at the same time reflected advanced symptomatic burden (CATSTAT-HF ClinicalTrials.gov number, NCT03389386)

    Efficacy of high-dose atorvastatin or rosuvastatin loading in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a meta-analysis of randomized controlled trials with GRADE qualification of available evidence

    No full text
    Purpose We aimed to summarize current evidence regarding the impact of a high-dose statin loading before percutaneous coronary intervention (PCI) on short-term outcomes in patients presenting with the acute coronary syndrome (ACS).Methods This meta-analysis was based on a search of the MEDLINE, Cochrane Central Register of Controlled Trials, Ovid Journals, and SCOPUS for randomized controlled trials that compared high-dose atorvastatin or rosuvastatin with no or low-dose statin administered before planned PCI in statin-naive patients with ACS. The primary endpoints were major adverse cardiovascular and cerebrovascular events (MACCE), myocardial infarction (MI), and all-cause mortality at 30 days. Prespecified subanalyses were performed with respect to statin and ACS type.Results A total of eleven trials enrolling 6291 patients were included, of which 75.4% received PCI. High-dose statin loading was associated with an overall 43% relative risk (RR) reduction in MACCE at 30 days (RR 0.57, 95% CI 0.41-0.77) in whole ACS population. This effect was primarily driven by the 39% reduction in the occurrence of MI (RR 0.61, 95% CI 0.46-0.80). No significant effect on all-cause mortality reduction was observed (RR 0.92, 95% CI 0.67-1.26). In the setting of ST-elevation myocardial infarction (STEMI), atorvastatin loading was associated with a 33% reduction in MACCE (RR 0.67, 95% CI 0.48-0.94), while in non-ST-elevation myocardial infarction ACS (NSTE-ACS), rosuvastatin loading was associated with 52% reduction in MACCE at 30 days (RR 0.48, 95% CI 0.34-0.66). The level of evidence as qualified with GRADE was low to high, depending on the outcome.Conclusion A high-dose loading of statins before PCI in patients with ACS reduces MACCE and reduces the risk of MI with no impact on mortality at 30 days. Atorvastatin reduces MACCE in STEMI while rosuvastatin reduces MACCE in NSTE-ACS at 30 days
    corecore