75 research outputs found
The multiplicity of alternative splicing decisions in Caenorhabditis elegans is linked to specific intronic regulatory motifs and minisatellites
Background: alternative splicing diversifies the pool of messenger RNA molecules encoded by individual genes. This diversity is particularly high when multiple splicing decisions cause a combinatorial arrangement of several alternate exons. We know very little on how the multiple decisions occurring during the maturation of single transcripts are coordinated and whether specific sequence elements might be involved.Results: here, the Caenorhabditis elegans genome was surveyed in order to identify sequence elements that might play a specific role in the regulation of multiple splicing decisions. The introns flanking alternate exons in transcripts whose maturation involves multiple alternative splicing decisions were compared to those whose maturation involves a single decision. Fifty-eight penta-, hexa-, and hepta-meric elements, clustered in 17 groups, were significantly over-represented in genes subject to multiple alternative splicing decisions. Most of these motifs relate to known splicing regulatory elements and appear to be well conserved in the related species Caenorhabditis briggsae. The usage of specific motifs is not linked to the gene product function, but rather depends on the gene structure, since it is influenced by the distance separating the multiple splicing decision sites. Two of these motifs are part of the CeRep25B minisatellite, which is also over-represented at the vicinity of alternative splicing regions. Most of the remaining motifs are not part of repeated sequence elements, but tend to occur in specific heterologous pairs in genes subject to multiple alternative splicing decisions.Conclusions: the existence of specific intronic sequence elements linked to multiple alternative splicing decisions is intriguing and suggests that these elements might have some specialized regulatory role during splicing
Molecules empowering animals to sense and respond to temperature in changing environments
Adapting behavior to thermal cues is essential for animal growth and survival. Indeed, each and every biological and biochemical process is profoundly affected by temperature and its extremes can cause irreversible damage. Hence, animals have developed thermotransduction mechanisms to detect and encode thermal information in the nervous system and acclimation mechanisms to finely tune their response over different timescales. While temperature-gated TRP channels are the best described class of temperature sensors, recent studies highlight many new candidates, including ionotropic and metabotropic receptors. Here, we review recent findings in vertebrate and invertebrate models, which highlight and substantiate the role of new candidate molecular thermometers and reveal intracellular signaling mechanisms implicated in thermal acclimation at the behavioral and cellular levels
Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes
<p>Abstract</p> <p>Background</p> <p>Physiological long term adaptation of pancreatic beta cells is driven by stimuli such as glucose and incretin hormones acting via cAMP (e.g. GLP-1) and involves regulated gene expression. Several rapidly inducible immediate-early genes (IEGs) have been identified in beta cells. Many of these IEGs code for transcription factors and have the potential to control the transcription of downstream <it>target </it>genes likely involved in long term cellular adaptation. The identity of these <it>target </it>genes has not been determined, and the sequence of events occurring during beta cell adaptation is still unclear.</p> <p>Results</p> <p>We have developed a microarray-based strategy for the systematic search of <it>targets</it>. In Min6 insulin-secreting cells, we identified 592 <it>targets </it>and 1278 IEGs responding to a co-stimulation with glucose and cAMP. Both IEGs and <it>targets </it>were involved in a large panel of functions, including those important to beta cell physiology (metabolism, secretion). Nearly 200 IEGs were involved in signaling and transcriptional regulation. To find specific examples of the regulatory link between IEGs and <it>targets</it>, <it>target </it>promoter sequences were analyzed <it>in silico</it>. Statistically significant over-representation of AP-1 response elements notably suggested an important role for this transcription factor, which was experimentally verified. Indeed, cell stimulation altered expression of IEG-encoded components of the AP-1 complex, activating AP-1-dependent transcription. Loss and gain-of-function experiments furthermore allowed to validate a new AP-1 regulated gene (<it>sulfiredoxin</it>) among the <it>targets</it>. AP-1 and <it>sulfiredoxin </it>are sequentially induced also in primary cells from rat islets of Langerhans.</p> <p>Conclusion</p> <p>By identifying IEGs and their downstream <it>targets</it>, this study brings a comprehensive description of the transcriptional response occurring after beta cell stimulation, as well as new mechanistic insights concerning the AP-1 transcription factor.</p
Intragenic alternative splicing coordination is essential for Caenorhabditis elegans slo-1 gene function
Alternative splicing is critical for diversifying eukaryotic proteomes, but the rules governing and coordinating splicing events among multiple alternate splice sites within individual genes are not well understood. We developed a quantitative PCR-based strategy to quantify the expression of the 12 transcripts encoded by the Caenorhabditis elegans slo-1 gene, containing three alternate splice sites. Using conditional probability-based models, we show that splicing events are coordinated across these sites. Further, we identify a point mutation in an intron adjacent to one alternate splice site that disrupts alternative splicing at all three sites. This mutation leads to aberrant synaptic transmission at the neuromuscular junction. In a genomic survey, we found that a UAAAUC element disrupted by this mutation is enriched in introns flanking alternate exons in genes with multiple alternate splice sites. These results establish that proper coordination of intragenic alternative splicing is essential for normal physiology of slo-1 in vivo and identify putative specialized cis-regulatory elements that regulate the coordination of intragenic alternative splicing
Loss of CaMKI function disrupts salt aversive learning in C. elegans
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior is likely advantageous to avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 leads to an altered pattern of sensory- evoked calcium responses that may underlie salt aversive learning. Our study implicates the conserved CaMKI/CMK-1 as an essential cell-autonomous regulator for behavioral plasticity to environmental salt in C. elegans
Dual color neural activation and behavior control with chrimson and CoChR in Caenorhabditis elegans
By enabling a tight control of cell excitation, optogenetics is a powerful approach to study the function of neurons and neural circuits. With its transparent body, a fully mapped nervous system, easily quantifiable behaviors and many available genetic tools, Caenorhabditis elegans is an extremely well-suited model to decipher the functioning logic of the nervous system with optogenetics. Our goal was to establish an efficient dual color optogenetic system for the independent excitation of different neurons in C. elegans. We combined two recently discovered channelrhodopsins: the red-light sensitive Chrimson from Chlamydomonas noctigama and the blue-light sensitive CoChR from Chloromonas oogama. Codon-optimized versions of Chrimson and CoChR were designed for C. elegans and expressed in different mechanosensory neurons. Freely moving animals produced robust behavioral responses to light stimuli of specific wavelengths. Since CoChR was five times more sensitive to blue light than the commonly used ChR2, we were able to use low blue light intensities producing no cross-activation of Chrimson. Thanks to these optogenetics tools, we revealed asymmetric cross-habituation effects between the gentle and harsh touch sensory motor pathways. Collectively, our results establish the Chrimson/CoChR pair as a potent tool for bimodal neural excitation in C. elegans and equip this genetic model organism for the next generation of in vivo optogenetic analyses
Coronary Sinus Atresia With Persistent Left Superior Vena Cava: Unusual Clinical Presentation and Endovascular Management
Atresia of the coronary sinus (ACS) is a rare congenital anomaly. When associated with persistent left superior vena cava (PLSVC), this defect could have no significant hemodynamic effect, and the patient might remain asymptomatic. However, vascular interventions might induce changes or complications that could show the anomaly. Appropriate management requires a good understanding of this condition. We present the first reported case of ACS and PLSVC occurring after thrombosis of the innominate vein (IV) after central venous catheter placement. The patient presented with atypical subacute chest pain and recurrent extrasystoles. Diagnosis and characterization of vascular anomalies was made by computed tomography phlebography, and the patient was successfully managed by endovascular recanalization of the IV
- …