81 research outputs found

    An Azole-Resistant Candida parapsilosis Outbreak: Clonal Persistence in the Intensive Care Unit of a Brazilian Teaching Hospital

    Get PDF
    The incidence of candidemia by the Candida parapsilosis complex has increased considerably in recent decades, frequently related to use of indwelling intravascular catheters. The ability of this pathogen to colonize healthcare workers (HCW)' hands, and to form biofilm on medical devices has been associated with the occurrence of nosocomial outbreaks and high mortality rates. Fluconazole has been the leading antifungal drug for the treatment of invasive candidiasis in developing countries. However, azole-resistant C. parapsilosis isolates are emerging worldwide, including in Brazil. Few studies have correlated outbreak infections due to C. parapsilosis with virulence factors, such as biofilm production. We thus conducted a microbiological investigation of C. parapsilosis complex isolates from a Brazilian teaching hospital. Additionally, we identified a previously unrecognized outbreak caused by a persistent azole-resistant C. parapsilosis (sensu stricto) clone in the intensive care unit (ICU), correlating it with the main clinical data from the patients with invasive candidiasis. The molecular identification of the isolates was carried out by PCR-RFLP assay; antifungal susceptibility and biofilm formation were also evaluated. The genotyping of all C. parapsilosis (sensu stricto) was performed by microsatellite analysis and the presence of ERG11 mutations was assessed in the azole non-susceptible isolates. Fourteen C. parapsilosis (sensu stricto) isolates were recovered from patients with invasive candidiasis, eight being fluconazole and voriconazole-resistant, and two intermediate only to fluconazole (FLC). All non-susceptible isolates showed a similar pattern of biofilm formation with low biomass and metabolic activity. The A395T mutation in ERG11 was detected exclusively among the azole-resistant isolates. According to the microsatellite analysis, all azole non-susceptible isolates from the adult ICU were clustered together indicating the occurrence of an outbreak. Regarding clinical data, all patients infected by the clonal non-susceptible isolates and none of the patients infected by the susceptible isolates had been previously exposed to corticosteroids (p = 0.001), while the remaining characteristics showed no statistical significance. The current study revealed the persistence of an azole non-susceptible C. parapsilosis clone with low capacity to form biofilm over two years in the adult ICU. These results reinforce the need of epidemiological surveillance and monitoring antifungal susceptibility of C. parapsilosis isolates in hospital wards

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio

    2 nd Brazilian Consensus on Chagas Disease, 2015

    Full text link
    Abstract Chagas disease is a neglected chronic condition with a high burden of morbidity and mortality. It has considerable psychological, social, and economic impacts. The disease represents a significant public health issue in Brazil, with different regional patterns. This document presents the evidence that resulted in the Brazilian Consensus on Chagas Disease. The objective was to review and standardize strategies for diagnosis, treatment, prevention, and control of Chagas disease in the country, based on the available scientific evidence. The consensus is based on the articulation and strategic contribution of renowned Brazilian experts with knowledge and experience on various aspects of the disease. It is the result of a close collaboration between the Brazilian Society of Tropical Medicine and the Ministry of Health. It is hoped that this document will strengthen the development of integrated actions against Chagas disease in the country, focusing on epidemiology, management, comprehensive care (including families and communities), communication, information, education, and research

    Educomunicação e suas áreas de intervenção: Novos paradigmas para o diálogo intercultural

    Get PDF
    oai:omp.abpeducom.org.br:publicationFormat/1O material aqui divulgado representa, em essência, a contribuição do VII Encontro Brasileiro de Educomunicação ao V Global MIL Week, da UNESCO, ocorrido na ECA/USP, entre 3 e 5 de novembro de 2016. Estamos diante de um conjunto de 104 papers executivos, com uma média de entre 7 e 10 páginas, cada um. Com este rico e abundante material, chegamos ao sétimo e-book publicado pela ABPEducom, em seus seis primeiros anos de existência. A especificidade desta obra é a de trazer as “Áreas de Intervenção” do campo da Educomunicação, colocando-as a serviço de uma meta essencial ao agir educomunicativo: o diálogo intercultural, trabalhado na linha do tema geral do evento internacional: Media and Information Literacy: New Paradigms for Intercultural Dialogue

    Risk prediction for weed infestation using classification rules

    No full text
    This paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE

    Nop53p interacts with 5.8S rRNA co-transcriptionally, and regulates processing of pre-rRNA by the exosome

    No full text
    In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. One of the early stages of pre-rRNA processing includes formation of the two intermediate complexes pre-40S and pre-60S, which then form the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, ribosomal proteins and processing factors. The yeast nucleolar protein Nop53p has previously been identified in the pre-60S complex and shown to affect pre-rRNA processing by directly binding to 5.8S rRNA, and to interact with Nop17p and Nip7p, which are also involved in this process. Here we show that Nop53p binds 5.8S rRNA co-transcriptionally through its N-terminal region, and that this protein portion can also partially complement growth of the conditional mutant strain Delta nop53/GAL:NOP53. Nop53p interacts with Rrp6p and activates the exosome in vitro. These results indicate that Nop53p may recruit the exosome to 7S pre-rRNA for processing. Consistent with this observation and similar to the observed in exosome mutants, depletion of Nop53p leads to accumulation of polyadenylated pre-rRNAs
    corecore