18 research outputs found

    Improving exploration in policy gradient search: Application to symbolic optimization

    Full text link
    Many machine learning strategies designed to automate mathematical tasks leverage neural networks to search large combinatorial spaces of mathematical symbols. In contrast to traditional evolutionary approaches, using a neural network at the core of the search allows learning higher-level symbolic patterns, providing an informed direction to guide the search. When no labeled data is available, such networks can still be trained using reinforcement learning. However, we demonstrate that this approach can suffer from an early commitment phenomenon and from initialization bias, both of which limit exploration. We present two exploration methods to tackle these issues, building upon ideas of entropy regularization and distribution initialization. We show that these techniques can improve the performance, increase sample efficiency, and lower the complexity of solutions for the task of symbolic regression.Comment: Published in 1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 202

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Reutilização do conhecimento para aprendizado por reforço profundo.

    No full text
    With the rise of Deep Learning the field of Artificial Intelligence (AI) Research has entered a new era. Together with an increasing amount of data and vastly improved computing capabilities, Machine Learning builds the backbone of AI, providing many of the tools and algorithms that drive development and applications. While we have already achieved many successes in the fields of image recognition, language processing, recommendation engines, robotics, or autonomous systems, most progress was achieved when the algorithms were focused on learning only a single task with little regard to effort and reusability. Since learning a new task from scratch often involves an expensive learning process, in this work, we are considering the use of previously acquired knowledge to speed up the learning of a new task. For that, we investigated the application of Transfer Learning methods for Deep Reinforcement Learning (DRL) agents and propose a novel framework for knowledge preservation and reuse. We show, that the knowledge transfer can make a big difference if the source knowledge is chosen carefully in a systematic approach. To get to this point, we provide an overview of existing literature of methods that realize knowledge transfer for DRL, a field which has been starting to appear frequently in the relevant literature only in the last two years. We then formulate the Case-based Reasoning methodology, which describes a framework for knowledge reuse in general terms, in Reinforcement Learning terminology to facilitate the adaption and communication between the respective communities. Building on this framework, we propose Deep Case-based Policy Inference (DECAF) and demonstrate in an experimental evaluation the usefulness of our approach for sequential task learning with knowledge preservation and reuse. Our results highlight the benefits of knowledge transfer while also making aware of the challenges that come with it. We consider the work in this area as an important step towards more stable general learning agents that are capable of dealing with the most complex tasks, which would be a key achievement towards Artificial General Intelligence.Com a evolução da Aprendizagem Profunda (Deep Learning), o campo da Inteligência Artificial (IA) entrou em uma nova era. Juntamente com uma quantidade crescente de dados e recursos computacionais cada vez mais aprimorados, o Aprendizado de Máquina estabelece a base para a IA moderna, fornecendo muitas das ferramentas e algoritmos que impulsionam seu desenvolvimento e aplicações. Apesar dos muitos sucessos nas áreas de reconhecimento de imagem, processamento de linguagem natural, sistemas de recomendação, robótica e sistemas autônomos, a maioria dos avanços foram feitos focando no aprendizado de apenas uma única tarefa, sem muita atenção aos esforços dispendidos e reusabilidade da solução. Como o aprendizado de uma nova tarefa geralmente envolve um processo de aprendizado despendioso, neste trabalho, estamos considerando o reúso de conhecimento para acelerar o aprendizado de uma nova tarefa. Para tanto, investigamos a aplicação dos métodos de Transferência de Aprendizado (Transfer Learning) para agentes de Aprendizado por Reforço profundo (Deep Reinforcement Learning - DRL) e propomos um novo arcabouço para preservação e reutilização de conhecimento. Mostramos que a transferência de conhecimento pode fazer uma grande diferença no aprendizado se a origem do conhecimento for escolhida cuidadosa e sistematicamente. Para chegar a este ponto, nós fornecemos uma visão geral da literatura existente de métodos que realizam a transferência de conhecimento para DRL, um campo que tem despontado com frequência na literatura relevante apenas nos últimos dois anos. Em seguida, formulamos a metodologia Raciocínio baseado em Casos (Case-based Reasoning), que descreve uma estrutura para reutilização do conhecimento em termos gerais, na terminologia de Aprendizado por Reforço, para facilitar a adaptação e a comunicação entre as respectivas comunidades. Com base nessa metodologia, propomos Deep Casebased Policy Inference (DECAF) e demonstramos, em uma avaliação experimental, a utilidade de nossa proposta para a aprendizagem sequencial de tarefas, com preservação e reutilização do conhecimento. Nossos resultados destacam os benefícios da transferência de conhecimento e, ao mesmo tempo, conscientizam os desafios que a acompanham. Consideramos o trabalho nesta área como um passo importante para agentes de aprendizagem mais estáveis, capazes de lidar com as tarefas mais complexas, o que seria um passo fundamental para a Inteligência Geral Artificial

    Deep learning architecture for gesture recognition

    No full text
    O reconhecimento de atividade de visão de computador desempenha um papel importante na investigação para aplicações como interfaces humanas de computador, ambientes inteligentes, vigilância ou sistemas médicos. Neste trabalho, é proposto um sistema de reconhecimento de gestos com base em uma arquitetura de aprendizagem profunda. Ele é usado para analisar o desempenho quando treinado com os dados de entrada multi-modais em um conjunto de dados de linguagem de sinais italiana. A área de pesquisa subjacente é um campo chamado interação homem-máquina. Ele combina a pesquisa sobre interfaces naturais, reconhecimento de gestos e de atividade, aprendizagem de máquina e tecnologias de sensores que são usados para capturar a entrada do meio ambiente para processamento posterior. Essas áreas são introduzidas e os conceitos básicos são descritos. O ambiente de desenvolvimento para o pré-processamento de dados e algoritmos de aprendizagem de máquina programada em Python é descrito e as principais bibliotecas são discutidas. A coleta dos fluxos de dados é explicada e é descrito o conjunto de dados utilizado. A arquitetura proposta de aprendizagem consiste em dois passos. O pré-processamento dos dados de entrada e a arquitetura de aprendizagem. O pré-processamento é limitado a três estratégias diferentes, que são combinadas para oferecer seis diferentes perfis de préprocessamento. No segundo passo, um Deep Belief Network é introduzido e os seus componentes são explicados. Com esta definição, 294 experimentos são realizados com diferentes configurações. As variáveis que são alteradas são as definições de pré-processamento, a estrutura de camadas do modelo, a taxa de aprendizagem de pré-treino e a taxa de aprendizagem de afinação. A avaliação dessas experiências mostra que a abordagem de utilização de uma arquitetura ... (Resumo completo, clicar acesso eletrônico abaixo)Activity recognition from computer vision plays an important role in research towards applications like human computer interfaces, intelligent environments, surveillance or medical systems. In this work, a gesture recognition system based on a deep learning architecture is proposed. It is used to analyze the performance when trained with multi-modal input data on an Italian sign language dataset. The underlying research area is a field called human-machine interaction. It combines research on natural user interfaces, gesture and activity recognition, machine learning and sensor technologies, which are used to capture the environmental input for further processing. Those areas are introduced and the basic concepts are described. The development environment for preprocessing data and programming machine learning algorithms with Python is described and the main libraries are discussed. The gathering of the multi-modal data streams is explained and the used dataset is outlined. The proposed learning architecture consists of two steps. The preprocessing of the input data and the actual learning architecture. The preprocessing is limited to three different strategies, which are combined to offer six different preprocessing profiles. In the second step, a Deep Belief network is introduced and its components are explained. With this setup, 294 experiments are conducted with varying configuration settings. The variables that are altered are the preprocessing settings, the layer structure of the model, the pretraining and the fine-tune learning rate. The evaluation of these experiments show that the approach of using a deep learning architecture on an activity or gesture recognition task yields acceptable results, but has not yet reached a level of maturity, which would allow to use the developed models in serious applications

    Improving Deep Reinforcement Learning with Knowledge Transfer

    No full text
    Recent successes in applying Deep Learning techniques on Reinforcement Learning algorithms have led to a wave of breakthrough developments in agent theory and established the field of Deep Reinforcement Learning (DRL). While DRL has shown great results for single task learning, the multi-task case is still underrepresented in the available literature. This D.Sc. research proposal aims at extending DRL to the multi- task case by leveraging the power of Transfer Learning algorithms to improve the training time and results for multi-task learning. Our focus lies on defining a novel framework for scalable DRL agents that detects similarities between tasks and balances various TL techniques, like parameter initialization, policy or skill transfer

    Policy Reuse in Deep Reinforcement Learning

    No full text
    Driven by recent developments in Artificial Intelligence research, a promising new technology for building intelligent agents has evolved. The approach is termed Deep Reinforcement Learning and combines the classic field of Reinforcement Learning (RL) with the representational power of modern Deep Learning approaches. It is very well suited for single task learning but needs a long time to learn any new task. To speed up this process, we propose to extend the concept to multi-task learning by adapting Policy Reuse, a Transfer Learning approach from classic RL, to use with Deep Q-Networks

    An Advising Framework for Multiagent Reinforcement Learning Systems

    No full text
    Reinforcement Learning has long been employed to solve sequential decision-making problems with minimal input data. However, the classical approach requires a long time to learn a suitable policy, especially in Multiagent Systems. The teacher-student framework proposes to mitigate this problem by integrating an advising procedure in the learning process, in which an experienced agent (human or not) can advise a student to guide her exploration. However, the teacher is assumed to be an expert in the learning task. We here propose an advising framework where multiple agents advise each other while learning in a shared environment, and the advisor is not expected to necessarily act optimally. Our experiments in a simulated Robot Soccer environment show that the learning process is improved by incorporating this kind of advice
    corecore