51 research outputs found

    Axonal transport deficit in a KIF5A–/– mouse model

    Get PDF
    Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder preferentially affecting the longest corticospinal axons. More than 40 HSP genetic loci have been identified, among them SPG10, an autosomal dominant HSP caused by point mutations in the neuronal kinesin heavy chain protein KIF5A. Constitutive KIF5A knockout (KIF5A–/–) mice die early after birth. In these mice, lungs were unexpanded, and cell bodies of lower motor neurons in the spinal cord swollen, but the pathomechanism remained unclear. To gain insights into the pathophysiology, we characterized survival, outgrowth, and function in primary motor and sensory neuron cultures from KIF5A–/– mice. Absence of KIF5A reduced survival in motor neurons, but not in sensory neurons. Outgrowth of axons and dendrites was remarkably diminished in KIF5A–/– motor neurons. The number of axonal branches was reduced, whereas the number of dendrites was not altered. In KIF5A–/– sensory neurons, neurite outgrowth was decreased but the number of neurites remained unchanged. In motor neurons maximum and average velocity of mitochondrial transport was reduced both in anterograde and retrograde direction. Our results point out a role of KIF5A in process outgrowth and axonal transport of mitochondria, affecting motor neurons more severely than sensory neurons. This gives pathophysiological insights into KIF5A associated HSP, and matches the clinical findings of predominant degeneration of the longest axons of the corticospinal tract

    Arabidopsis thaliana MIRO1 and MIRO2 GTPases Are Unequally Redundant in Pollen Tube Growth and Fusion of Polar Nuclei during Female Gametogenesis

    Get PDF
    MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/−)/miro2-2(−/−) plants. Compared to miro1(+/−) plants, the miro1(+/−)/miro2-2(−/−) plants showed increased segregation distortion. miro1(+/−)/miro2-2(−/−) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/−)/miro2-2(−/−) plants. Further investigations revealed that loss of MIRO2 (miro2(−/−)) function in the miro1(+/−) background enhanced pollen tube growth defects. In developing miro1(+/−)/miro2(−/−) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/−) background enhances the miro1(+/−) phenotype significantly, even though miro2(−/−) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/−)/miro2(−/−) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages

    Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4

    Get PDF
    Abstract Purpose The objective of the present study is to identify proteins that change in the extent of the modification with O-linked N-acetylglucosamine (O-GlcNAcylation) in the kidney from diabetic model Goto-Kakizaki (GK) rats, and to discuss the relation between O-GlcNAcylation and the pathological condition in diabetes. Methods O-GlcNAcylated proteins were identified by two-dimensional gel electrophoresis, immunoblotting and peptide mass fingerprinting. The level of O-GlcNAcylation of these proteins was examined by immunoprecipitation, immunoblotting and in situ Proximity Ligation Assay (PLA). Results O-GlcNAcylated proteins that changed significantly in the degree of O-GlcNAcylation were identified as cytoskeletal proteins (α-actin, α-tubulin, α-actinin 4, myosin) and mitochondrial proteins (ATP synthase β, pyruvate carboxylase). The extent of O-GlcNAcylation of the above proteins increased in the diabetic kidney. Immunofluorescence and in situ PLA studies revealed that the levels of O-GlcNAcylation of actin, α-actinin 4 and myosin were significantly increased in the glomerulus and the proximal tubule of the diabetic kidney. Immunoelectron microscopy revealed that immunolabeling of α-actinin 4 is disturbed and increased in the foot process of podocytes of glomerulus and in the microvilli of proximal tubules. Conclusion These results suggest that changes in the O-GlcNAcylation of cytoskeletal proteins are closely associated with the morphological changes in the podocyte foot processes in the glomerulus and in microvilli of proximal tubules in the diabetic kidney. This is the first report to show that α-actinin 4 is O-GlcNAcylated. α-Actinin 4 will be a good marker protein to examine the relation between O-GlcNAcylation and diabetic nephropathy.</p

    Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor

    Get PDF
    BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity
    • …
    corecore