6,980 research outputs found
Regulatory Dynamics on Random Networks: Asymptotic Periodicity and Modularity
We study the dynamics of discrete-time regulatory networks on random
digraphs. For this we define ensembles of deterministic orbits of random
regulatory networks, and introduce some statistical indicators related to the
long-term dynamics of the system. We prove that, in a random regulatory
network, initial conditions converge almost surely to a periodic attractor. We
study the subnetworks, which we call modules, where the periodic asymptotic
oscillations are concentrated. We proof that those modules are dynamically
equivalent to independent regulatory networks.Comment: 23 pages, 3 figure
X-ray rocking curve study of Si-implanted GaAs, Si, and Ge
Crystalline properties of Si-implanted GaAs, Si, and Ge have been studied by Bragg case double-crystal x-ray diffraction. Sharp qualitative and quantitative differences were found between the damage in GaAs on one hand and Si and Ge on the other. In Si and Ge the number of defects and the strain increase linearly with dose up to the amorphous threshold. In GaAs the increase in these quantities is neither linear nor monotonic with dose. At a moderate damage level the GaAs crystal undergoes a transition from elastic to plastic behavior. This transition is accompanied by the creation of extended defects, which are not detected in Si or Ge
Schwarzschild Atmospheric Processes: A Classical Path to the Quantum
We develop some classical descriptions for processes in the Schwarzschild
string atmosphere. These processes suggest relationships between macroscopic
and microscopic scales. The classical descriptions developed in this essay
highlight the fundamental quantum nature of the Schwarzschild atmospheric
processes.Comment: to appear in Gen. Rel. Gra
A core genetic module : the Mixed Feedback Loop
The so-called Mixed Feedback Loop (MFL) is a small two-gene network where
protein A regulates the transcription of protein B and the two proteins form a
heterodimer. It has been found to be statistically over-represented in
statistical analyses of gene and protein interaction databases and to lie at
the core of several computer-generated genetic networks. Here, we propose and
mathematically study a model of the MFL and show that, by itself, it can serve
both as a bistable switch and as a clock (an oscillator) depending on kinetic
parameters. The MFL phase diagram as well as a detailed description of the
nonlinear oscillation regime are presented and some biological examples are
discussed. The results emphasize the role of protein interactions in the
function of genetic modules and the usefulness of modelling RNA dynamics
explicitly.Comment: To be published in Physical Review
Noise Effects on the Complex Patterns of Abnormal Heartbeats
Patients at high risk for sudden death often exhibit complex heart rhythms in
which abnormal heartbeats are interspersed with normal heartbeats. We analyze
such a complex rhythm in a single patient over a 12-hour period and show that
the rhythm can be described by a theoretical model consisting of two
interacting oscillators with stochastic elements. By varying the magnitude of
the noise, we show that for an intermediate level of noise, the model gives
best agreement with key statistical features of the dynamics.Comment: 4 pages, 4 figures, RevTe
Continual variations in the high energy X-ray flux from Sco X-1
Balloon X ray observations of intensity fluctuations in Sco X-
Dimension in a Radiative Stellar Atmosphere
Dimensional scales are examined in an extended 3+1 Vaidya atmosphere
surrounding a Schwarzschild source. At one scale, the Vaidya null fluid
vanishes and the spacetime contains only a single spherical 2-surface. Both of
these behaviors can be addressed by including higher dimensions in the
spacetime metric.Comment: to appear in Gen. Rel. Gra
A comparison of absolute, ratio and allometric scaling methods for normalizing strength in elite American football players
Division I football players exemplify the greatest range in body mass of any modern team sport. Body mass may differ by over 80 kg between the various positions. Absolute muscular strength is typically greater in larger individuals, but such data does not allow for accurate comparisons. Therefore, in order to compare the performance indices of individual groups allometric rather than ratio scaling has been suggested. The purpose of this study was to compare absolute strength, normalized ratio and allometrically scaled data among players of different size
Fractal Scales in a Schwarzschild Atmosphere
Recently, Glass and Krisch have extended the Vaidya radiating metric to
include both a radiation fluid and a string fluid [1999 Class. Quantum Grav.
vol 16, 1175]. Mass diffusion in the extended Schwarzschild atmosphere was
studied. The continuous solutions of classical diffusive transport are believed
to describe the envelope of underlying fractal behavior. In this work we
examine the classical picture at scales on which fractal behavior might be
evident.Comment: to appear in Class. Quantum Gra
Collective dynamics of two-mode stochastic oscillators
We study a system of two-mode stochastic oscillators coupled through their
collective output. As a function of a relevant parameter four qualitatively
distinct regimes of collective behavior are observed. In an extended region of
the parameter space the periodicity of the collective output is enhanced by the
considered coupling. This system can be used as a new model to describe
synchronization-like phenomena in systems of units with two or more oscillation
modes. The model can also explain how periodic dynamics can be generated by
coupling largely stochastic units. Similar systems could be responsible for the
emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure
- …