1,070 research outputs found
Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions.
Life and death fate decisions allow cells to avoid massive apoptotic death in response to genotoxic stress. Although the regulatory mechanisms and signalling pathways controlling DNA repair and apoptosis are well characterized, the precise molecular strategies that determine the ultimate choice of DNA repair and survival or apoptotic cell death remain incompletely understood. Here we report that a protein tyrosine phosphatase, EYA, is involved in promoting efficient DNA repair rather than apoptosis in response to genotoxic stress in mammalian embryonic kidney cells by executing a damage-signal-dependent dephosphorylation of an H2AX carboxy-terminal tyrosine phosphate (Y142). This post-translational modification determines the relative recruitment of either DNA repair or pro-apoptotic factors to the tail of serine phosphorylated histone H2AX (gamma-H2AX) and allows it to function as an active determinant of repair/survival versus apoptotic responses to DNA damage, revealing an additional phosphorylation-dependent mechanism that modulates survival/apoptotic decisions during mammalian organogenesis
Recommended from our members
Validation of machine learning models to detect amyloid pathologies across institutions.
Semi-quantitative scoring schemes like the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) are the most commonly used method in Alzheimer's disease (AD) neuropathology practice. Computational approaches based on machine learning have recently generated quantitative scores for whole slide images (WSIs) that are highly correlated with human derived semi-quantitative scores, such as those of CERAD, for Alzheimer's disease pathology. However, the robustness of such models have yet to be tested in different cohorts. To validate previously published machine learning algorithms using convolutional neural networks (CNNs) and determine if pathological heterogeneity may alter algorithm derived measures, 40 cases from the Goizueta Emory Alzheimer's Disease Center brain bank displaying an array of pathological diagnoses (including AD with and without Lewy body disease (LBD), and / or TDP-43-positive inclusions) and levels of AÎČ pathologies were evaluated. Furthermore, to provide deeper phenotyping, amyloid burden in gray matter vs whole tissue were compared, and quantitative CNN scores for both correlated significantly to CERAD-like scores. Quantitative scores also show clear stratification based on AD pathologies with or without additional diagnoses (including LBD and TDP-43 inclusions) vs cases with no significant neurodegeneration (control cases) as well as NIA Reagan scoring criteria. Specifically, the concomitant diagnosis group of AD + TDP-43 showed significantly greater CNN-score for cored plaques than the AD group. Finally, we report that whole tissue computational scores correlate better with CERAD-like categories than focusing on computational scores from a field of view with densest pathology, which is the standard of practice in neuropathological assessment per CERAD guidelines. Together these findings validate and expand CNN models to be robust to cohort variations and provide additional proof-of-concept for future studies to incorporate machine learning algorithms into neuropathological practice
Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State
The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed
Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon
Refractory-composite/heat-pipe-cooled wing an tail leading edges are being considered for use on hypersonic vehicles to limit maximum temperatures to values below material reuse limits and to eliminate the need to actively cool the leading edges. The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of heat pipes embedded in carbon/carbon (C/C). A three-foot-long, molybdenum-rhenium heat pipe with a lithium working fluid was fabricated and tested at an operating temperature of 2460 F to verify the individual heat-pipe design. Following the fabrication of this heat pipe, three additional heat pipes were fabricated and embedded in C/C. The C/C heat-pipe test article was successfully tested using quartz lamps in a vacuum chamber in both a horizontal and vertical orientation. Start up and steady state data are presented for the C/C heat-pipe test article. Radiography and eddy current evaluations were performed on the test article
X-34 Experimental Aeroheating at Mach 6 and 10
Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle
Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom
Publication history: Accepted - 8 December 2017; Published online - 20 December 2017.Bovine tuberculosis has been an escalating animal health issue in the
United Kingdom since the 1980s, even though control policies have been in place
for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis, in the reemergence of the disease has been largely overlooked. We
compared the interaction between bovine monocyte-derived macrophages (bMDM)
and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences
in survival and growth in bMDM. Although uptake was similar, the number of viable
intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more
bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome
activation, and a greater type I interferon response than G18. In conclusion, the two
investigated M. bovis strains interact in significantly different ways with the host
macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces
greater signaling to attract other immune cells and induces host cell death, which
may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in
the United Kingdom warrants further investigation.Recombinant TNF and IL-10 were provided under the auspices of the Biotechnology and Biological Sciences Research Council (BBSRC) grants (BB/I019863/1 and BB/I020519/1) with the support of the Scottish Government as an Industrial Partnership Award with AbD Serotec (a Bio-Rad Company).
This work was supported by the European Framework 7 small collaborative project MACROSYS (FP7-KBBE-2007-1-1-2). E.J.G. was also supported by a BBSRC Strategic Programme grant (Control of Infectious Diseases [BB/P013740/1]
A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes
<p>Abstract</p> <p>Background</p> <p>Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, <it>Mollicutes</it>. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins.</p> <p>Results</p> <p>Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the <it>Mollicutes</it>. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling.</p> <p>Conclusions</p> <p>We describe novel features of PARCELs (<b>P</b>alindromic <b>A</b>mphipathic <b>R</b>epeat <b>C</b>oding <b>EL</b>ements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.</p
Biotransformation of an uncured composite material
The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible
- âŠ