582 research outputs found

    Could we learn more about HERA high Q2Q^2 anomaly from LEP200 and TEVATRON? R-parity violation scenario

    Get PDF
    The excess of high Q2Q^2 events at HERA reported in the early 1997 by H1 and ZEUS collaborations has become the subject of extensive studies in the framework of several models related to new physics. Here we concentrate on the most promising, from our point of view, model describing HERA anomaly. We update our previous analysis and take into account new HERA statistics of the 1997 year. HERA events are considered within the R-parity broken SUSY model for a specific scenario with several non-zero couplings. R-parity broken SUSY with several non-zero couplings could explain both high Q2e++jetsQ^2 e^+ + jets and μ++jets\mu^+ + jets observed at HERA. The consequence of such a particular scenario is the excess of high Q2Q^2 di- or tri-jet events at HERA. The relation of this scenario for LEP and TEVATRON colliders is considered. This study shows that if a squark resonance does take place at HERA, supersymmetry with broken R-parity can be revealed at either LEP200 or TEVATRON in the near future.Comment: 15 pages, LaTeX file with 9 eps figure

    Minimal Supersymmetric Standard Model within CompHEP software package

    Get PDF
    The Minimal Supersymmetric Standard Model is presented as a model for the CompHEP software package as a set of files containing the complete Lagrangian of the MSSM, particle contents and parameters. All resources of CompHEP with a user-friendly interface are now available for the phenomenological study of the MSSM. Various special features of the model are discussed.Comment: 11 pages, LaTeX, submitted to Comp. Phys. Communicatio

    Development of a method of electrodeposition of non-ferrous metals on a rotating cathode covered with gallium

    Get PDF
    Electrodeposition of copper and nickel from acidic solutions using a rotating cathode coated with liquid and solid gallium has been studied. Methods of nonferrous metals separation from the gallium coating of the cathode were determined. Electrodeposition on the liquid gallium coating was carried out at a temperature of 50 °C. Separation of metals from gallium was performed by alkaline treatment. On the solid gallium cathode coating, electrodeposition was performed at 25 °C. The metal precipitates were separated from the cathode after it was heated. When using cathode with hard gallium coating the reduction of electric power consumption for copper by 85 % and for nickel by 15 % was obtained

    Development of a method of electrodeposition of non-ferrous metals on a rotating cathode covered with gallium

    Get PDF
    Electrodeposition of copper and nickel from acidic solutions using a rotating cathode coated with liquid and solid gallium has been studied. Methods of nonferrous metals separation from the gallium coating of the cathode were determined. Electrodeposition on the liquid gallium coating was carried out at a temperature of 50 °C. Separation of metals from gallium was performed by alkaline treatment. On the solid gallium cathode coating, electrodeposition was performed at 25 °C. The metal precipitates were separated from the cathode after it was heated. When using cathode with hard gallium coating the reduction of electric power consumption for copper by 85 % and for nickel by 15 % was obtained

    Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization

    Get PDF
    Background: Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized, systematic evolutionary analyses of utilization of these metals are limited. Results: We carried out comparative genomic analyses to examine occurrence and evolutionary dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes. Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase, and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of environmental and other conditions and identity of organisms that show dependence on Ni or Co revealed that host-associated organisms (particularly obligate intracellular parasites and endosymbionts) have a tendency for loss of Ni/Co utilization. Conclusion: Our data provide information on the evolutionary dynamics of Ni and Co utilization and highlight widespread use of these metals in the three domains of life, yet only a limited number of user proteins

    Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization

    Get PDF
    Background: Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized, systematic evolutionary analyses of utilization of these metals are limited. Results: We carried out comparative genomic analyses to examine occurrence and evolutionary dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes. Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase, and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of environmental and other conditions and identity of organisms that show dependence on Ni or Co revealed that host-associated organisms (particularly obligate intracellular parasites and endosymbionts) have a tendency for loss of Ni/Co utilization. Conclusion: Our data provide information on the evolutionary dynamics of Ni and Co utilization and highlight widespread use of these metals in the three domains of life, yet only a limited number of user proteins

    Application of Fuzzy Algorithms for Controlling the Modes of Solar Panels in Technological Monitoring at Peak Load

    Get PDF
    The functional structure of geoecological and technological monitoring systems is analyzed. It is shown that the complication of the multifunctional automated system of geoecological and technological monitoring (MF AS) and the increase in its dynamics aggravates uncertainty of its condition estimation. An uncertainty model of the state of a multifunctional automated system of geoecological and technological monitoring has been developed. To implement the model, fuzzy sets of linguistic estimates fluctuating in time are obtained. The application of fuzzy algorithms to control the modes of solar panels and the detection of failures in thermoelectric systems has been carried out. As a result of the simulation, an increase in the efficiency of the thermoelectric system was revealed by reducing peak loads by 28% and, accordingly, reducing the probability of failures by almost 2 times

    Spectral Analysis of Multi-dimensional Self-similar Markov Processes

    Full text link
    In this paper we consider a discrete scale invariant (DSI) process {X(t),tR+}\{X(t), t\in {\bf R^+}\} with scale l>1l>1. We consider to have some fix number of observations in every scale, say TT, and to get our samples at discrete points αk,kW\alpha^k, k\in {\bf W} where α\alpha is obtained by the equality l=αTl=\alpha^T and W={0,1,...}{\bf W}=\{0, 1,...\}. So we provide a discrete time scale invariant (DT-SI) process X()X(\cdot) with parameter space {αk,kW}\{\alpha^k, k\in {\bf W}\}. We find the spectral representation of the covariance function of such DT-SI process. By providing harmonic like representation of multi-dimensional self-similar processes, spectral density function of them are presented. We assume that the process {X(t),tR+}\{X(t), t\in {\bf R^+}\} is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally we find the spectral density matrix of such DT-SIM process and show that its associated TT-dimensional self-similar Markov process is fully specified by {RjH(1),RjH(0),j=0,1,...,T1}\{R_{j}^H(1),R_{j}^H(0),j=0, 1,..., T-1\} where RjH(τ)R_j^H(\tau) is the covariance function of jjth and (j+τ)(j+\tau)th observations of the process.Comment: 16 page
    corecore