8 research outputs found

    Geostatistical based optimization of groundwater monitoring well network design

    Get PDF
    Monitoring groundwater quality in economically important and other aquifers is carried out regularly as part of regulatory processes for water and other resource development. Many water quality parameters are measured as part of baseline monitoring around mining and onshore gas resource development regions to develop improved understanding of the hydrogeological system as well as to inform managerial decisions to assess and manage contamination risks and health hazards. Water quality distribution in an aquifer is most often inferred from point measurements from limited number of bores drilled at arbitrary locations. Estimating the distribution of water quality parameters in the aquifer based on these point measurements is often a challenging task and results in high uncertainty in the estimates due to limited data availability. Minimizing uncertainty can be achieved by drilling more bores to collect water quality data and several approaches are available to identify optimal bore hole locations to minimize estimation uncertainty. However, optimization of borehole locations is difficult when multiple water quality parameters are of interest and have different spatial distributions in the aquifer. In this study we use geostatistical kriging to interpolate a large number of groundwater quality parameters. Then we integrate these predicted values and use the Differential Evolution algorithm to determine optimal locations for bores that would simultaneously reduce spatial prediction uncertainty of all parameters. The method is applied for designing a groundwater monitoring network in the Namoi region of Australia for monitoring groundwater quality in an economically important aquifer of the Great Artesian Basin. Optimal locations for 10 new monitoring bores are identified using this approach

    Global mismatch of policy and research on drivers of biodiversity loss

    No full text
    The United Nations 2030 Agenda for Sustainable Development calls for urgent actions to reduce global biodiversity loss. Here, we synthesize >44,000 articles published in the past decade to assess the research focus on global drivers of loss. Relative research efforts on different drivers are not well aligned with their assessed impact, and multiple driver interactions are hardly considered. Research on drivers of biodiversity loss needs urgent realignment to match predicted severity and inform policy goals

    Spatio-temporal assimilation of modelled catchment loads with monitoring data in the Great Barrier Reef

    No full text
    Soil erosion and sediment transport into waterways and the ocean can adversely affect water clarity, leading to the deterioration of marine ecosystems such as the iconic Great Barrier Reef (GBR) in Australia. Quantifying a sediment load and its associated uncertainty is an important task in delineating how changes in management practices can contribute to improvements in water quality, and therefore continued sustainability of the GBR. However, monitoring data are spatially (and often temporally) sparse, making load estimation complicated, particularly when there are lengthy periods between sampling or during peak flow periods of major events when samples cannot be safely taken.\ud \ud We develop a spatio-temporal statistical model that is mechanistically motivated by a process-based deterministic model called Dynamic SedNet. The model is developed within a Bayesian hierarchical modelling framework that uses dimension reduction to accommodate seasonal and spatial patterns to assimilate monitored sediment concentration and flow data with output from Dynamic SedNet. The approach is applied in the Upper Burdekin catchment in Queensland, Australia, where we obtain daily estimates of sediment concentrations, stream discharge volumes and sediment loads at 411 spatial locations across 20 years. Our approach provides a method for assimilating both monitoring data and modelled output, providing a statistically rigorous method for quantifying uncertainty through space and time that was previously unavailable through process-based models

    Database of Articles used in Mazor & Doropoulos et al. (2018, Nature Ecology and Evolution)

    No full text
    This is a database of journals downloaded from the Web of Science from 2006-2016. These include 21 ecology and conservation journals. R package bibliometrix was used to classify papers into systems (Terrestrial, Marine, Freshwater), and into driver of biodiversity loss (Climate Change, Habitat Change, Invasive Species, Overexploitation and Pollution). <div><br></div

    The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI)::a completed reference database of lung nodules on CT scans

    No full text
    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process
    corecore