4 research outputs found

    Mobile Asteroid Surface Scout (MASCOT) - Design, Development and Delivery of a Small Asteroid Lander Aboard Hayabusa2

    Get PDF
    MASCOT is a small asteroid lander launched on December 3rd, 2014, aboard the Japanese HAYABUSA2 asteroid sample-return mission towards the 980 m diameter C-type near-Earth asteroid (162173) 1999 JU3. MASCOT carries four full-scale asteroid science instruments and an uprighting and relocation device within a shoebox-sized 10 kg spacecraft; a complete lander comparable in mass and volume to a medium-sized science instrument on interplanetary missions. Asteroid surface science will be obtained by: MicrOmega, a hyperspectral near- to mid-infrared soil microscope provided by IAS; MASCAM, a wide-angle Si CMOS camera with multicolour LED illumination unit; MARA, a multichannel thermal infrared surface radiometer; the magnetometer, MASMAG, provided by the Technical University of Braunschweig. Further information on the conditions at or near the lander‘s surfaces is generated as a byproduct of attitude sensors and other system sensors. MASCOT uses a highly integrated, ultra-lightweight truss-frame structure made from a CFRP-foam sandwich. It has three internal mechanisms: a preload release mechanism, to release the structural preload applied for launch across the separation mechanism interface; a separation mechanism, to realize the ejection of MASCOT from the semi-recessed stowed position within HAYABUSA2; and the mobility mechanism, for uprighting and hopping. MASCOT uses semi-passive thermal control with Multi-Layer Insulation, two heatpipes and a radiator for heat rejection during operational phases, and heaters for thermal control of the battery and the main electronics during cruise. MASCOT is powered by a primary battery during its on-asteroid operational phase, but supplied by HAYABUSA2 during cruise for check-out and calibration operations as well as thermal control. All housekeeping and scientific data is transmitted to Earth via a relay link with the HAYABUSA2 main-spacecraft, also during cruise operations. The link uses redundant omnidirectional UHF-Band transceivers and patch antennae on the lander. The MASCOT On-Board Computer is a redundant system providing data storage, instrument interfacing, command and data handling, as well as autonomous surface operation functions. Knowledge of the lander’s attitude on the asteroid is key to the success of its uprighting and hopping function. The attitude is determined by a threefold set of sensors: optical distance sensors, photo electric cells and thermal sensors. A range of experimental sensors is also carried. MASCOT was build by the German Aerospace Center, DLR, with contributions from the French space agency, CNES. The system design, science instruments, and operational concept of MASCOT will be presented, with sidenotes on the development of the mission and its integration with HAYABUSA2

    Planetary Defense Ground Zero: MASCOT's View on the Rocks - an Update between First Images and Sample Return

    Get PDF
    At 01:57:20 UTC on October 3rd, 2018, after 3½ years of cruise aboard the JAXA spacecraft HAYABUSA2 and about 3 months in the vicinity of its target, the MASCOT lander was separated successfully by from an altitude of 41 m. After a free-fall of only ~5m51s MASCOT made first contact with C-type near-Earth and potentially hazardous asteroid (162173) Ryugu, by hitting a big boulder. MASCOT then bounced for ~11m3s, in the process already gathering valuable information on mechanical properties of the surface before it came to rest. It was able to perform science measurements at 3 different locations on the surface of Ryugu and took many images of its spectacular pitch-black landscape. MASCOT’s payload suite was designed to investigate the fine-scale structure, multispectral reflectance, thermal characteristics and magnetic properties of the surface. Somewhat unexpectedly, MASCOT encountered very rugged terrain littered with large surface boulders. Observing in-situ, it confirmed the absence of fine particles and dust as already implied by the remote sensing instruments aboard the HAYABUSA2 spacecraft. After some 17h of operations, MASCOT‘s mission ended with the last communication contact as it followed Ryugu’s rotation beyond the horizon as seen from HAYABUSA2. Soon after, its primary battery was depleted. We present a broad overview of the recent scientific results of the MASCOT mission from separation through descent, landing and in-situ investigations on Ryugu until the end of its operation and relate them to the needs of planetary defense interactions with asteroids. We also recall the agile, responsive and sometimes serendipitous creation of MASCOT, the two-year rush of building and delivering it to JAXA’s HAYABUSA2 spacecraft in time for launch, and the four years of in-flight operations and on-ground testing to make the most of the brief on-surface mission

    INEO - Imaging of Near Earth Objects

    No full text
    INEO is a program of four explorer flyby missions for imaging near Earth objects by means of small spin stabilized spacecrafts. A low cost approachis achieved by using wxisting hardware and available scientific instrumentation. For the first mission the payload consistsof the flight spare model of the Halley Multicolour Camera and three Munich Dust Counters. the imaging instrument will deter- mine the physical properties of the target. The dust environment of the asteroid or comet will be investigated with the dust detectors. For the follow on missions different cameras and spectrometers and a magnetometer are proposed. In this paper the outline of INEO is presented which will either be launched as an auxiliary passenger on large launch systems like ARIANE IV or as the main payload on medium sized launche vehicles like TAURUS, M-3S-II or CZ-1D without changing the configuration of the space probe. First results of mission analysis will be presented

    The MASCOT lander aboard Hayabusa2: The in-situ exploration of NEA (162173) Ryugu

    No full text
    After 3.5 years of cruise, and about 3 months in the vicinity of its target, the MASCOT lander was deployed successfully on October 3, 2018 by the Hayabusa2 spacecraft onto the C-type near-Earth asteroid (162173) Ryugu. After a free-fall of 5 ​min 51 ​s from an altitude of 41 ​m MASCOT experienced its first contact with the asteroid hitting a big boulder. The lander bounced for ~11 ​min 3 ​s before it came to rest. MASCOT was able to perform science measurements with its payload suite at 3 different locations on the surface of Ryugu. It investigated the fine-scale structure, multispectral reflectance, thermal characteristics and magnetic properties. The surface consists of very rugged terrain littered with large surface boulders. The in-situ measurements confirmed the absence of fine particles and dust as already implied by the remote sensing instruments aboard the Hayabusa2 spacecraft. After about 17 ​h of operations, the MASCOT mission terminated with the last communication contact as its primary batteries depleted. This paper summarizes the MASCOT mission covering its four years of in-flight operations, its preparation for the descent, landing and in-situ investigation on the asteroid Ryugu until the end of its operation
    corecore