1,171 research outputs found
Top Quarks as a Window to String Resonances
We study the discovery potential of string resonances decaying to
final state at the LHC. We point out that top quark pair production is a
promising and an advantageous channel for studying such resonances, due to
their low Standard Model background and unique kinematics. We study the
invariant mass distribution and angular dependence of the top pair production
cross section via exchanges of string resonances. The mass ratios of these
resonances and the unusual angular distribution may help identify their
fundamental properties and distinguish them from other new physics. We find
that string resonances for a string scale below 4 TeV can be detected via the
channel, either from reconstructing the semi-leptonic
decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
Interplay between Fermi gamma-ray lines and collider searches
We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac
fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or
Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a
monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV
A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM
Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume
a SM-like Higgs with the mass 123-127 GeV and study its implication in low
energy SUSY by comparing the MSSM and NMSSM. We consider various experimental
constraints at 2-sigma level (including the muon g-2 and the dark matter relic
density) and perform a comprehensive scan over the parameter space of each
model. Then in the parameter space which is allowed by current experimental
constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the
properties of the sensitive parameters (like the top squark mass and the
trilinear coupling A_t) and calculate the rates of the di-photon signal and the
VV^* (V=W,Z) signals at the LHC. Our typical findings are: (i) In the MSSM the
top squark and A_t must be large and thus incur some fine-tuning, which can be
much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to
enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction,
while in the NMSSM the di-photon rate can be readily enhanced in several ways;
(iii) In the MSSM the signal rates of pp -> h -> VV^* at the LHC are never
enhanced compared with their SM predictions, while in the NMSSM they may get
enhanced significantly; (iv) A large part of the parameter space so far
survived will be soon covered by the expected XENON100(2012) sensitivity
(especially for the NMSSM).Comment: Version in JHEP (refs added
Hierarchical information clustering by means of topologically embedded graphs
We introduce a graph-theoretic approach to extract clusters and hierarchies
in complex data-sets in an unsupervised and deterministic manner, without the
use of any prior information. This is achieved by building topologically
embedded networks containing the subset of most significant links and analyzing
the network structure. For a planar embedding, this method provides both the
intra-cluster hierarchy, which describes the way clusters are composed, and the
inter-cluster hierarchy which describes how clusters gather together. We
discuss performance, robustness and reliability of this method by first
investigating several artificial data-sets, finding that it can outperform
significantly other established approaches. Then we show that our method can
successfully differentiate meaningful clusters and hierarchies in a variety of
real data-sets. In particular, we find that the application to gene expression
patterns of lymphoma samples uncovers biologically significant groups of genes
which play key-roles in diagnosis, prognosis and treatment of some of the most
relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table
A placebo-controlled trial of Korean red ginseng extract for preventing Influenza-like illness in healthy adults
<p>Abstracts</p> <p>Background</p> <p>Standardized Korean red ginseng extract has become the best-selling influenza-like illness (ILI) remedy in Korea, yet much controversy regarding the efficacy of the Korean red ginseng (KRG) in reducing ILI incidence remains. The aim of the study is to assess the efficacy of the KRG extract on the ILI incidence in healthy adults.</p> <p>Methods/Design</p> <p>We will conduct a randomized, double-blind, placebo-controlled study at the onset of the influenza seasons. A total of 100 subjects 30-70 years of age will be recruited from the general populations. The subjects will be instructed to take 9 capsules per day of either the KRG extract or a placebo for a period of 3 months. The primary outcome measure is to assess the frequency of ILI onset in participated subjects. Secondary variable measures will be included severity and duration of ILI symptoms. The ILI symptoms will be scored by subjects using a 4-point scale.</p> <p>Discussion</p> <p>This study is a randomized placebo controlled trial to evaluate the efficacy of the KRG extract compared to placebo and will be provided valuable new information about the clinical and physiological effects of the KRG extract on reduction of ILI incidence including flu and upper respiratory tract infections. The study has been pragmatically designed to ensure that the study findings can be implemented into clinical practice if KRG extract can be shown to be an effective reduction strategy in ILI incidence.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01478009">NCT01478009</a>.</p
Biosafety of Non-Surface Modified Carbon Nanocapsules as a Potential Alternative to Carbon Nanotubes for Drug Delivery Purposes
BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C ₆₀ fullerene (C ₆₀). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection
Application of a target array Comparative Genomic Hybridization to prenatal diagnosis
<p>Abstract</p> <p>Background</p> <p>While conventional G-banded karyotyping still remains a gold standard in prenatal genetic diagnoses, the widespread adoption of array Comparative Genomic Hybridization (array CGH) technology for postnatal genetic diagnoses has led to increasing interest in the use of this same technology for prenatal diagnosis. We have investigated the value of our own designed DNA chip as a prenatal diagnostic tool for detecting submicroscopic deletions/duplications and chromosome aneuploidies.</p> <p>Methods</p> <p>We designed a target bacterial artificial chromosome (BAC)-based aCGH platform (MacArray™ M-chip), which specifically targets submicroscopic deletions/duplications for 26 known genetic syndromes of medical significance observed prenatally. To validate the DNA chip, we obtained genomic DNA from 132 reference materials generated from patients with 22 genetic diseases and 94 clinical amniocentesis samples obtained for karyotyping.</p> <p>Results</p> <p>In the 132 reference materials, all known genomic alterations were successfully identified. In the 94 clinical samples that were also subjected to conventional karyotyping, three cases of balanced chromosomal aberrations were not detected by aCGH. However, we identified eight cases of microdeletions in the Yq11.23 chromosomal region that were not found by conventional karyotyping. This region harbors the DAZ gene, and deletions may lead to non-obstructive spermatogenesis.</p> <p>Conclusions</p> <p>We have successfully designed and applied a BAC-based aCGH platform for prenatal diagnosis. This platform can be used in conjunction with conventional karyotyping and will provide rapid and accurate diagnoses for the targeted genomic regions while eliminating the need to interpret clinically-uncertain genomic regions.</p
Benzoate Catabolite Repression of the Phenol Degradation in Acinetobacter calcoaceticus PHEA-2
Acinetobacter calcoaceticus PHEA-2 exhibited a delayed utilization of phenol in the presence of benzoate. Benzoate supplementation completely inhibited phenol degradation in a benzoate 1,2-dioxygenase knockout mutant. The mphR encoding the transcriptional activator and mphN encoding the largest subunit of multi-component phenol hydroxylase in the benA mutant were significantly downregulated (about 7- and 70-fold) on the basis of mRNA levels when benzoate was added to the medium. The co-transformant assay of E. coli JM109 with mphK::lacZ fusion and the plasmid pETR carrying mphR gene showed that MphR did not activate the mph promoter in the presence of benzoate. These results suggest that catabolite repression of phenol degradation by benzoate in A. calcoaceticus PHEA-2 is mediated by the inhibition of the activator protein MphR
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
- …