602 research outputs found
Boundary Conditions for Three-Body Scattering in Configuration Space
The asymptotic behavior of three-body scattering wave functions in
configuration space is studied by considering a model equation that has the
same asymptotic form as the Faddeev equations. Boundary conditions for the wave
function are derived, and their validity is verified by numerical calculations.
It is shown that these boundary conditions for the partial differential
equation can be used to obtain accurate numerical solutions for the wave
function.Comment: 25 pages, revtex, 9 figures. Submitted to Phys. Rev. C, epsfig.sty
require
On the discrepancies in the low energy neutron-deuteron breakup
In view of recent neutron-deuteron (nd) breakup data for neutron-neutron (nn)
and neutron-proton (np) quasi-free-scattering (QFS) arrangements and the large
discrepancy found between theoretical predictions and measured nn QFS cross
sections, we analyze the sensitivity of the QFS cross sections to different
partial wave components of the nucleon-nucleon (NN) interaction. We found that
the QFS cross section is strongly dominated by the 1S0 and 3S1-3D1
contributions. Because the standard three-nucleon force (3NF) only weakly
influence the QFS region, we conjecture, that it must be the nn 1S0 force
component which is responsible for the discrepancy in the nn QFS peak. A
stronger 1S0 nn force is required to bring theory and data into agreement. Such
an increased strength of the nn interaction will, however, not help to explain
the nd breakup symmetric-space-star (SST) discrepancy. Further experimental
cross-checkings are required.Comment: 17 pages, 10 figure
The Operator form of 3H (3He) and its Spin Structure
An operator form of the 3N bound state is proposed. It consists of eight
operators formed out of scalar products in relative momentum and spin vectors,
which are applied on a pure 3N spin 1/2 state. Each of the operators is
associated with a scalar function depending only on the magnitudes of the two
relative momenta and the angle between them. The connection between the
standard partial wave decomposition of the 3N bound state and the operator form
is established, and the decomposition of these scalar function in terms of
partial wave components and analytically known auxiliary functions is given.
That newly established operator form of the 3N bound state exhibits the
dominant angular and spin dependence analytically. The scalar functions are
tabulated and can be downloaded. As an application the spin dependent nucleon
momentum distribution in a polarized 3N bound state is calculated to illustrate
the use of the new form of the 3N bound state.Comment: 21 pages, 1 table, 8 figures, revtex
Dineutron and the three-nucleon continuum observables
We investigate how strong a hypothetical 1S0 bound state of two neutrons
would affect different observables in the neutron-deuteron reactions. To that
aim we extend our momentum space scheme of solving three-nucleon Faddeev
equations to incorporate in addition to the deuteron also the 1S0 dineutron
bound state. We discuss effects induced by dineutron on the angular
distribution of the neutron-deuteron elastic scattering and cross sections of
the deuteron breakup. A comparison to the available data for neutron-deuteron
total cross sections and elastic scattering angular distributions cannot
decisively exclude a possibility that the two neutrons can form 1S0 bound
state. However, the strong modifications of a final-state-interaction peak of
the neutron-deuteron breakup when changing from negative to positive values of
the neutron-neutron scattering length seems to exclude existence of dineutron.Comment: 27 pages, 11 figure
Spin and dynamics in relativistic quantum theories
The role of relativity and dynamics in defining the spin and orbital angular
momentum content of hadronic systems is discussed.Comment: 7 pages, proceedings for Light Cone 2014, Raleigh, N
One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization
We start from a Lagrangian describing scalar "nucleons" and mesons which
interact through a simple vertex. Okubo's method of unitary transformation is
used to describe a single nucleon dressed by its meson cloud. We find an
expression for the physical mass of the nucleon being correct up to second
order in the coupling constant. It is then verified that this result is the
same as the corresponding expression found by Feynman techniques. Finally we
also express the three boost operators in terms of the physical nucleon mass.
Doing so we find expressions for all the ten generators of Poincar\'e
transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure
Momentum space evolution of chiral three-nucleon forces
A framework to evolve three-nucleon (3N) forces in a plane-wave basis with
the Similarity Renormalization Group (SRG) is presented and applied to
consistent interactions derived from chiral effective field theory at
next-to-next-to-leading order (NLO). We demonstrate the unitarity of the
SRG transformation, show the decoupling of low and high momenta, and present
the first investigation of universality in chiral 3N forces at low resolution
scales. The momentum-space-evolved 3N forces are consistent and can be directly
combined with the standard SRG-evolved two-nucleon (NN) interactions for
ab-initio calculations of nuclear structure and reactions.Comment: 5 pages, 4 figure
A Three-Dimensional Treatment of the Three-Nucleon Bound State
Recently a formalism for a direct treatment of the Faddeev equation for the
three-nucleon bound state in three dimensions has been proposed. It relies on
an operator representation of the Faddeev component in the momentum space and
leads to a finite set of coupled equations for scalar functions which depend
only on three variables. In this paper we provide further elements of this
formalism and show the first numerical results for chiral NNLO nuclear forces.Comment: 25 pages, 7 figures (34 eps files
Nuclear forces from chiral Lagrangians using the method of unitary transformation II: The two-nucleon system
We employ the chiral nucleon-nucleon potential derived in ref.[1] to study
bound and scattering states in the two-nucleon system. At next-to-leading
order, this potential is the sum of renormalized one-pion and two-pion exchange
and contact interactions. At next-to-next-to-leading order, we have additional
chiral two-pion exchange with low-energy constants determined from pion-nucleon
scattering. Alternatively, we consider the \Delta(1232) as an explicit degree
of freedom in the effective field theory. The nine parameters related to the
contact interactions can be determined by a fit to the np S- and P-waves and
the mixing parameter \epsilon_1 for laboratory energies below 100 MeV. The
predicted phase shifts and mixing parameters for higher energies and higher
angular momenta are mostly well described for energies below 300 MeV. The
S-waves are described as precisely as in modern phenomenological potentials. We
find a good description of the deuteron properties.Comment: 41 pp, LaTeX2e file, 16 figures (uses epsf
Nucleon-Nucleon Scattering in a Three Dimensional Approach
The nucleon-nucleon (NN) t-matrix is calculated directly as function of two
vector momenta for different realistic NN potentials. To facilitate this a
formalism is developed for solving the two-nucleon Lippmann-Schwinger equation
in momentum space without employing a partial wave decomposition. The total
spin is treated in a helicity representation. Two different realistic NN
interactions, one defined in momentum space and one in coordinate space, are
presented in a form suited for this formulation. The angular and momentum
dependence of the full amplitude is studied and displayed. A partial wave
decomposition of the full amplitude it carried out to compare the presented
results with the well known phase shifts provided by those interactions.Comment: 26 pages plus 10 jpg figure
- …