5 research outputs found

    Thermal processing of Jupiter Family Comets during their chaotic orbital evolution

    Full text link
    Evidence for cometary activity beyond Jupiter and Saturn's orbits -- such as that observed for Centaurs and long period comets -- suggests that the thermal processing of comet nuclei starts long before they enter the inner Solar System, where they are typically observed and monitored. Such observations raise questions as to the depth of unprocessed material, and whether the activity of JFCs can be representative of any primitive material. Here we model the coupled thermal and dynamical evolution of Jupiter Family Comets (JFCs), from the moment they leave their outer Solar System reservoirs until their ejection into interstellar space. We apply a thermal evolution model to a sample of simulated JFCs obtained from dynamical simulations (arXiv:1706.07447) that successfully reproduce the orbital distribution of observed JFCs. We show that due to the stochastic nature of comet trajectories toward the inner solar system, all simulated JFCs undergo multiple heating episodes resulting in significant modifications of their initial volatile contents. A statistical analysis constrains the extent of such processing. We suggest that primordial condensed hypervolatile ices should be entirely lost from the layers that contribute to cometary activity observed today. Our results demonstrate that understanding the orbital (and thus, heating) history of JFCs is essential when putting observations in a broader context.Comment: 30 pages, 10 figures, to be published in Ap

    Sur la primitivité des noyaux cométaires : modélisation couplée de leur évolution thermique et dynamique Doctorant

    No full text
    Comets are a population of small Solar System bodies, often described as the most primitive population in our Solar System, holding valuable information on its formation and evolution. Formed early, at the same time as the giant planets, in the outer parts of the protoplanetary disk and scattered outwards shortly after their formation towards distant and cold reservoirs, they are considered to have preserved their primordial composition and properties to a great extent. However, the level of this primitive nature has started to be reevaluated recently, as a growing body of observational evidence and an important number of theoretical studies are suggesting the possibility of thermally-induced alterations before their return to the inner parts of the Solar System, where they are usually studied and observed. In this context, our work aims to examine the level of the primitive nature of different cometary families in our Solar System. To do so, we developed a dedicated thermal evolution model, designed for an efficient coupling to N-body simulations, tracking the long-term orbital evolution of planetesimals, originating in the outer parts of the protoplanetary disk and evolving into planetary-crossing orbits after a prolonged stay in outer Solar System reservoirs. Our results reveal the possibility of thermal processing, affecting mainly the primordial condensed hyper-volatile content and on a lesser extent the primordial moderately-volatile and amorphous water ice content, during the early phases of a comet's lifetime. A comparative study is indicating that long-period comets are expected to be the least altered population. Intense, yet sporadic, activity is also recorded in the planetary region, as comets return in the inner Solar System, compatible with the current observables on the Centaur population. These results indicate that the thermal evolution of cometary nuclei is inextricably related to their orbital evolution. They are also indicating that the cometary activity observed in the inner parts of the Solar System is very likely triggered from thermally processed subsurface layers, highlighting the necessity of considering the past evolutionary history of comets when interpreting the current observations in a broader context.Les comètes sont une population de petits corps du Système Solaire souvent décrits comme les objets les plus primitifs de notre Système Solaire, détenant des informations précieuses sur sa formation et son évolution. Formées tôt, au même temps que les planètes géantes, dans les parties externes du disque protoplanétaire et dispersées vers l'extérieur peu après leur formation pour être stockées dans des réservoirs lointains et froids, elles sont considérées comme ayant largement conservé leurs propriétés et composition primordiales. Cependant, le niveau de leur nature primitive a commencé à être revu, car un nombre croissant d'observables et d'études théoriques suggèrent la possibilité d'altérations thermiques avant leur retour dans les parties internes du Système Solaire où elles sont généralement étudiées et observées. Dans ce contexte, ce travail vise à examiner le niveau de cette nature primitive pour les différentes familles cométaires de notre Système Solaire. Dans ce but, nous avons développé un modèle d'évolution thermique dédié, conçu pour un couplage efficace aux simulations N-corps qui suivent l'évolution orbitale à long terme des planétésimaux, provenant des parties externes du disque protoplanétaire et évoluant vers des orbites dans la région planétaire, après un séjour prolongé dans les réservoirs extérieurs du système solaire. Nos résultats révèlent la possibilité d'altérations thermiques, affectant principalement le contenu condensé primordial d'hyper-volatiles et dans un second lieu le contenu primordial modérément volatile et la glace d'eau amorphe, au cours des premières phases de la vie des comètes. Une étude comparative indique que les comètes à longue période devraient être la population la moins altérée. Une activité intense, mais sporadique, est également enregistrée dans la région des planètes géantes, alors que les comètes reviennent dans le Système Solaire interne, compatible avec les observables actuelles concernant la population de Centaures. Ces résultats indiquent que l'évolution thermique des noyaux cométaires est inextricablement liée à leur évolution orbitale. Ils indiquent également que l'activité cométaire observée dans les parties internes du Système Solaire provient très probablement de couches déjà altérées, soulignant la nécessité de prendre en compte l'histoire dynamique des comètes lors de l'interprétation des observations actuelles

    On Averaging Eccentric Orbits: Implications for the Long-term Thermal Evolution of Comets

    No full text
    One of the common approximations in long-term evolution studies of small bodies is the use of circular orbits averaging the actual eccentric ones, facilitating the coupling of processes with very different timescales, such as the orbital changes and the thermal processing. Here we test a number of averaging schemes for elliptic orbits in the context of the long-term evolution of comets, aiming to identify the one that best reproduces the elliptic orbits’ heating patterns and the surface and subsurface temperature distributions. We use a simplified thermal evolution model applied on simulated comets both on elliptic and on their equivalent averaged circular orbits, in a range of orbital parameter space relevant to the inner solar system. We find that time-averaging schemes are more adequate than spatial-averaging ones. Circular orbits created by means of a time average of the equilibrium temperature approximate efficiently the subsurface temperature distributions of elliptic orbits in a large area of the orbital parameter space, rendering them a powerful tool for averaging elliptic orbits

    The Gateway from Centaurs to Jupiter-family Comets: Thermal and Dynamical Evolution

    No full text
    It was recently proposed that there exists a “gateway” in the orbital parameter space through which Centaurs transition to Jupiter-family comets (JFCs). Further studies have implied that the majority of objects that eventually evolve into JFCs should leave the Centaur population through this gateway. This may be naively interpreted as gateway Centaurs being pristine progenitors of JFCs. This is the point we want to address in this work. We show that the opposite is true: gateway Centaurs are, on average, more thermally processed than the rest of the population of Centaurs crossing Jupiter’s orbit. Using a dynamically validated JFC population, we find that only ∼20% of Centaurs pass through the gateway prior to becoming JFCs, in accordance with previous studies. We show that more than half of JFC dynamical clones entering the gateway for the first time have already been JFCs—they simply avoided the gateway on their first pass into the inner solar system. By coupling a thermal evolution model to the orbital evolution of JFC dynamical clones, we find a higher than 50% chance that the layer currently contributing to the observed activity of gateway objects has been physically and chemically altered, due to previously sustained thermal processing. We further illustrate this effect by examining dynamical clones that match the present-day orbits of 29P/Schwassmann-Wachmann 1, P/2019 LD2 (ATLAS), and P/2008 CL94 (Lemmon)

    Analysis of 35 years of transit observations by La Hire at Paris observatory.

    No full text
    International audienceJust after the achievement of the construction of the Paris Observatory in 1672, astronomers such as Jean Picard, Jean-Dominique Cassini, and Philippe de La Hire, were deeply involved in observations of the Sun, the Moon, the planets, and the stars. In particular, La Hire used a meridian circle to pursue these kinds of observations in a quasi-daily basis for more than 35 years, from 1683 to 1718; thus leading to very precious and huge registers carefully conserved in the archives of Paris Observatory. In this paper, we make a quantitative and qualitative analysis of this invaluable testimony. In particular, we explain how these observations, dating back to over three centuries ago, could be exploited for constraining modern determinations of basic astrometric parameters
    corecore