122 research outputs found

    Early dyspnoea relief in acute heart failure: prevalence, association with mortality, and effect of rolofylline in the PROTECT Study

    Get PDF
    AIMS: Dyspnoea and pulmonary and/or peripheral congestion are the most frequent manifestations of acute heart failure (AHF) and are important targets for therapy. We have assessed changes in dyspnoea, their relationship with mortality, and the effects of the adenosine A1 receptor antagonist rolofylline on these endpoints in patients enrolled in the PROTECT trial. METHODS AND RESULTS: PROTECT was a prospective, double-blind, placebo-controlled study assessing the effect of rolofylline in patients hospitalized for AHF with dyspnoea, fluid overload, increased plasma natriuretic peptides, and mild-to-moderate renal dysfunction. Early dyspnoea relief, prospectively defined as moderately or markedly better dyspnoea at both 24 and 48 h after the start of study drug administration, occurred in 49.8% of the patients. Early dyspnoea relief was associated with greater weight loss and with reduced mortality at Days 14 and 30 [hazard ratio (HR) 0.28, 95% confidence interval (CI): 0.15, 0.50; and 0.35, 95% CI: 0.22, 0.55, respectively]. Rolofylline administration was associated with an increase in the proportion of patients showing early dyspnoea relief (HR 1.30; 95% CI: 1.08, 1.57) and with a numerically lower mortality at 14 and 30 days, largely driven by the mortality due to HF [at 30 days, HR (95% CI, P-value): 0.65 (0.38-1.10, P= 0.107)]. Rolofylline did not reduce episodes of in-hospital worsening HF or post-discharge re-admissions, nor did it improve survival at 60 or 180 days. CONCLUSION: The present analysis from PROTECT demonstrated that more weight loss was associated with early dyspnoea relief and reduced short-term mortality

    Serum potassium levels and outcome in acute heart failure (Data from the PROTECT and COACH Trials)

    Get PDF
    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium ( 5.0 mEq/l) levels. Results were veri fi ed in a validation cohort of 1,023 patients. Mean age of patients was 71 – 11 years, and 66% were men. Low potassium was present in 115 patients (6%), normal potassium in 1,576 (84%), and high potassium in 176 (9%). Potassium levels increased during hospitalization (0.18 – 0.69 mEq/l). Patients with high potassium more often used angiotensin-converting enzyme inhibitors and mineralo- corticoid receptor antagonists before admission, had impaired baseline renal function and a better diuretic response (p [ 0.005), independent of mineralocorticoid receptor antagonist usage. During 180-day follow-up, a total of 330 patients (18%) died. Potassium levels at admission showed a univariate linear association with mortality (hazard ratio [log] 2.36, 95% con fi dence interval 1.07 to 5.23; p [ 0.034) but not after multivariate adjustment. Changes of potassium levels during hospitalization or potassium levels at discharge were not associated with outcome after multivariate analysis. Results in the validation cohort were similar to the index cohort. In conclusion, high potassium levels at admission are associated with an impaired renal function but a better diuretic response. Changes in po- tassium levels are common, and overall levels increase during hospitalization. In conclu- sion, potassium levels at admission or its change during hospitalization are not associated with mortality after multivariate adjustment

    Vasodilators in the treatment of acute heart failure: what we know, what we don’t

    Get PDF
    Although we have recently witnessed substantial progress in management and outcome of patients with chronic heart failure, acute heart failure (AHF) management and outcome have not changed over almost a generation. Vasodilators are one of the cornerstones of AHF management; however, to a large extent, none of those currently used has been examined by large, placebo-controlled, non-hemodynamic monitored, prospective randomized studies powered to assess the effects on outcomes, in addition to symptoms. In this article, we will discuss the role of vasodilators in AHF trying to point out which are the potentially best indications to their administration and which are the pitfalls which may be associated with their use. Unfortunately, most of this discussion is only partially evidence based due to lack of appropriate clinical trials. In general, we believe that vasodilators should be administered early to AHF patients with normal or high blood pressure (BP) at presentation. They should not be administered to patients with low BP since they may cause hypotension and hypoperfusion of vital organs, leading to renal and/or myocardial damage which may further worsen patients’ outcome. It is not clear whether vasodilators have a role in either patients with borderline BP at presentation (i.e., low-normal) or beyond the first 1–2 days from presentation. Given the limitations of the currently available clinical trial data, we cannot recommend any specific agent as first line therapy, although nitrates in different formulations are still the most widely used in clinical practice

    A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    Get PDF
    © 2015, The Author(s).Background: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic response in acute heart failure (AHF). Methods and results: We investigated explanatory and predictive models for diuretic response—weight loss at day 4 per 40 mg of furosemide—in 974 patients with AHF included in the PROTECT trial. Biomarkers, addressing multiple pathophysiological pathways, were determined at baseline and after 24 h. An explanatory baseline biomarker model of a poor diuretic response included low potassium, chloride, hemoglobin, myeloperoxidase, and high blood urea nitrogen, albumin, triglycerides, ST2 and neutrophil gelatinase-associated lipocalin (r2 = 0.086). Diuretic response after 24 h (early diuretic response) was a strong predictor of diuretic response (β = 0.467, P < 0.001; r2 = 0.523). Addition of diuretic response after 24 h to biomarkers and clinical characteristics significantly improved the predictive model (r2 = 0.586, P < 0.001). Conclusions: Biomarkers indicate that diuretic unresponsiveness is associated with an atherosclerotic profile with abnormal renal function and electrolytes. However, predicting diuretic response is difficult and biomarkers have limited additive value. Patients at risk of poor diuretic response can be identified by measuring early diuretic response after 24 h
    corecore