19 research outputs found

    A SARS-CoV-2 full genome sequence of the B.1.1 lineage sheds light on viral evolution in Sicily in late 2020

    Get PDF
    9 páginas, 2 figuras, 2 tablasTo investigate the influence of geographic constrains to mobility on SARS-CoV-2 circulation before the advent of vaccination, we recently characterized the occurrence in Sicily of viral lineages in the second pandemic wave (September to December 2020). Our data revealed wide prevalence of the then widespread through Europe B.1.177 variant, although some viral samples could not be classified with the limited Sanger sequencing tools used. A particularly interesting sample could not be fitted to a major variant then circulating in Europe and has been subjected here to full genome sequencing in an attempt to clarify its origin, lineage and relations with the seven full genome sequences deposited for that period in Sicily, hoping to provide clues on viral evolution. The obtained genome is unique (not present in databases). It hosts 20 single-base substitutions relative to the original Wuhan-Hu-1 sequence, 8 of them synonymous and the other 12 encoding 11 amino acid substitutions, all of them already reported one by one. They include four highly prevalent substitutions, NSP12:P323L, S:D614G, and N:R203K/G204R; the much less prevalent S:G181V, ORF3a:G49V and N:R209I changes; and the very rare mutations NSP3:L761I, NSP6:S106F, NSP8:S41F and NSP14:Y447H. GISAID labeled this genome as B.1.1 lineage, a lineage that appeared early on in the pandemic. Phylogenetic analysis also confirmed this lineage diagnosis. Comparison with the seven genome sequences deposited in late 2020 from Sicily revealed branching leading to B.1.177 in one branch and to Alpha in the other branch, and suggested a local origin for the S:G118V mutation.This research received external funding to CR-G from Conselleria de Innovación Universidades, Ciencia y Sociedad Digital: Subvenciones a Grupos de Investigación Emergentes (Ref, GV/2021/163); to VR from the Agencia Estatal de Investigación of the Spanish Government (Ref PID2020-120322RB-C21) and the European Commission-NextGeneration EU CSIC Global Health Platform, Spanish Ministry of Science and Innovation (Ref MCIN/AEI/10.13039/501100011033); and to the Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri by the Project COVID-19: Traiettorie Evolutive di SARS-CoV-2 ed Indagine Sul Ruolo Degli Animali (IZS SI 03/20 RC), funded by the Italian Ministry of HealthPeer reviewe

    The instrument control unit of the ARIEL payload: design evolution following the unit and payload subsystems SRR (system requirements review)

    Get PDF
    ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is a medium-class mission of the European Space Agency, part of the Cosmic Vision program, whose launch is foreseen by early 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminium, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)1 has the double purpose, as suggested by its name, of performing photometry (0.50-0.55 µm) and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System) with a cadence of 10 Hz and contributing to reach a 0.02 arcsec pointing accuracy for bright targets. AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 µm (with a spectral resolution R > 100) and between 3.9 and 7.8 µm with a spectral resolution R > 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to AIRS (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit)

    Preliminary surface charging analysis of Ariel payload dielectrics in early transfer orbit and L2-relevant space environment

    Get PDF
    Ariel [1] is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. The operational orbit of the spacecraft is baselined as a large amplitude halo orbit around the Sun-Earth L2 Lagrangian point, as it offers the possibility of long uninterrupted observations in a fairly stable radiative and thermo-mechanical environment. A direct escape injection with a single passage through the Earth radiation belts and no eclipses is foreseen. The space environment around Earth and L2 presents significant design challenges to all spacecraft, including the effects of interactions with Sun radiation and charged particles owning to the surrounding plasma environment, potentially leading to dielectrics charging and unwanted electrostatic discharge (ESD) phenomena endangering the Payload operations and its data integrity. Here, we present some preliminary simulations and analyses about the Ariel Payload dielectrics and semiconductors charging along the transfer orbit from launch to L2 include

    The design of the instrument control unit and its role within the data processing system of the ESA PLATO Mission

    Get PDF
    PLATO1 is an M-class mission of the European Space Agency's Cosmic Vision program, whose launch is foreseen by 2026. PLAnetary Transits and Oscillations of stars aims to characterize exoplanets and exoplanetary systems by detecting planetary transits and conducting asteroseismology of their parent stars. PLATO is the next generation planetary transit space experiment, as it will fly after CoRoT, Kepler, TESS and CHEOPS; its objective is to characterize exoplanets and their host stars in the solar neighbors. While it is built on the heritage from previous missions, the major breakthrough to be achieved by PLATO will come from its strong focus on bright targets, typically with mvv<=8. The prime science goals characterizing and distinguishing PLATO from the previous missions are: the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone; the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for biomarkers in nearby habitable exoplanets (e.g. ARIEL Mission scientific case, E-ELT observations from Ground); a full characterization of the planet host stars, via asteroseismic analysis: this will provide the Community with the masses, radii and ages of the host stars, from which masses, radii and ages of the detected planets will be determined

    The instrument control unit of the PLATO payload: design consolidation following the preliminary design review by ESA

    Get PDF
    PLATO is an M-class mission (M3) of the European Space Agency (ESA) whose launch is scheduled in 2026. The main aim of the mission is the detection and characterization of terrestrial exoplanets orbiting around bright solar-type star. The payload consists of 26 small telescopes: 24 "normal" cameras and 2 "fast" cameras. The huge amount of data produced by the PLATO telescopes is acquired and processed on-board by the Data Processing System (DPS) made up by various processing electronic units. The DPS of the PLATO instrument comprises the Normal and Fast DPUs (Data Processing Units) and a single ICU (Instrument Control Unit), are data routed through a SpaceWire network. The topic of this paper is the description of the architecture of the ICU and its role within the DPS, the status of the Avionic Validation Model (AVM) testing at the end of the Unit Preliminary Design Review (UPDR) performed by ESA and the results of the test of the first engineering model

    Public design of digital commons in urban places: A case study

    No full text
    This paper can be framed within the growing interest in the public dimension of technology design: it proposes a framework for the public design of urban technologies by elaborating on the concepts of digital commons, matters of concerns and engagement. The framework is discussed through the case study of a mobility application developed within a wider project of digital commons design. We contrast a Smart City approach and a urban computing one, and we argue that the latter is more fruitful in the long run, since it entails elements for the establishment of forms of recursive engagement of users, who co-produce digital commons together with technology designers as a response to their matters of concern. Applying our framework to the design of urban technologies, we conclude that design should support collaborative practices starting from the articulation of matters of concern to designing in a participatory way
    corecore