2,050 research outputs found

    The Cosmological Mass Function with 1D Gravity

    Full text link
    The cosmological mass function problem is analyzed in full detail in the case of 1D gravity, with analytical, semi-analytical and numerical techniques. The extended Press & Schechter theory is improved by detailing the relation between smoothing radius and mass of the objects. This is done by introducing in the formalism the concept of a growth curve for the objects. The predictions of the extended Press & Schechter theory are compared to large N-body simulations of flat expanding 1D universes with scale-free power spectra of primordial perturbations. The collapsed objects in the simulations are located with a clump-finding algorithm designed to find regions that have undergone orbit crossing or that are in the multi-stream regime (these are different as an effect of the finite size of the multi-stream regions). It is found that the semi-analytical mass function theory, which has no free parameters, is able to recover the properties of collapsed objects both statistically and object by object. In particular, the predictions of regions in orbit crossing are optimized by the use of Gaussian filtering, while the use of sharp k-space filtering apparently allows to reproduce the larger multi-stream regions. The mass function theory does not reproduce well the clumps found with the standard friends-of-friends algorithm; however, the performance of this algorithm has not been thoroughly tested in the 1D cosmology. Our preliminary analyses of the 3D case confirms that the techniques developed in this paper are precious in understanding the cosmological mass function problem in 3D.Comment: 25 pages, revtex, postscript figures included, in press on Physical Review

    AdS3_3 solutions with exceptional supersymmetry

    Full text link
    Among the possible superalgebras that contain the AdS3_3 isometries, two interesting possibilities are the exceptional F(4)F(4) and G(3)G(3). Their R-symmetry is respectively SO(7) and G2G_2, and the amount of supersymmetry N=8{\cal N}=8 and N=7{\cal N}=7. We find that there exist two (locally) unique solutions in type IIA supergravity that realize these superalgebras, and we provide their analytic expressions. In both cases, the internal space is obtained by a round six-sphere fibred over an interval, with an O8-plane at one end. The R-symmetry is the symmetry group of the sphere; in the G(3)G(3) case, it is broken to G2G_2 by fluxes. We also find several numerical N=1{\cal N}=1 solutions with G2G_2 flavor symmetry, with various localized sources, including O2-planes and O8-planes.Comment: 30 pages, 4 figures; v3: revised appendix, minor correction

    Simulating realistic disk galaxies with a novel sub-resolution ISM model

    Get PDF
    We present results of cosmological simulations of disk galaxies carried out with the GADGET-3 TreePM+SPH code, where star formation and stellar feedback are described using our MUlti Phase Particle Integrator (MUPPI) model. This description is based on simple multi-phase model of the interstellar medium at unresolved scales, where mass and energy flows among the components are explicitly followed by solving a system of ordinary differential equations. Thermal energy from SNe is injected into the local hot phase, so as to avoid that it is promptly radiated away. A kinetic feedback prescription generates the massive outflows needed to avoid the over-production of stars. We use two sets of zoomed-in initial conditions of isolated cosmological halos with masses (2-3) * 10^{12} Msun, both available at several resolution levels. In all cases we obtain spiral galaxies with small bulge-over-total stellar mass ratios (B/T \approx 0.2), extended stellar and gas disks, flat rotation curves and realistic values of stellar masses. Gas profiles are relatively flat, molecular gas is found to dominate at the centre of galaxies, with star formation rates following the observed Schmidt-Kennicutt relation. Stars kinematically belonging to the bulge form early, while disk stars show a clear inside-out formation pattern and mostly form after redshift z=2. However, the baryon conversion efficiencies in our simulations differ from the relation given by Moster et al. (2010) at a 3 sigma level, thus indicating that our stellar disks are still too massive for the Dark Matter halo in which they reside. Results are found to be remarkably stable against resolution. This further demonstrates the feasibility of carrying out simulations producing a realistic population of galaxies within representative cosmological volumes, at a relatively modest resolution.Comment: 19 pages, 21 figures, MNRAS accepte

    A warm mode of gas accretion on forming galaxies

    Full text link
    We present results from high--resolution cosmological hydrodynamical simulations of a Milky--Way-sized halo, aimed at studying the effect of feedback on the nature of gas accretion. Simulations include a model of inter-stellar medium and star formation, in which SN explosions provide effective thermal feedback. We distinguish between gas accretion onto the halo, which occurs when gas particles cross the halo virial radius, and gas accretion onto the central galaxy, which takes place when gas particles cross the inner one-tenth of the virial radius. Gas particles can be accreted through three different channels, depending on the maximum temperature value, TmaxT_{\rm max}, reached during the particles' past evolution: a cold channel for Tmax106T_{\rm max}10^6K, and a warm one for intermediate values of TmaxT_{\rm max}. We find that the warm channel is at least as important as the cold one for gas accretion onto the central galaxy. This result is at variance with previous findings that the cold mode dominates gas accretion at high redshift. We ascribe this difference to the different supernova feedback scheme implemented in our simulations. While results presented so far in the literature are based on uneffective SN thermal feedback schemes and/or the presence of a kinetic feedback, our simulations include only effective thermal feedback. We argue that observational detections of a warm accretion mode in the high--redshift circum-galactic medium would provide useful constraints on the nature of the feedback that regulates star formation in galaxies.Comment: 6 pages, 3 figures, accepted for publication in ApJ

    Flexural and Shear Resistance of High Strength Concrete Beams

    Get PDF
    In the present paper, an analytical model is proposed that is able to determine the shear resistance of high strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on the evaluation of the resistance contribution due to beam and arch actions. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars and the crack spacing of R.C. beams are considered. The compressive strength of the compressed arch is also verified by taking into account of the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance;- size effects. Finally, some of the more recent analytical expressions able to predict the shear and the flexural resistance of concrete beams are mentioned and a comparison is made with experimental data

    Shear design of high strength concrete beams in MRFs

    Get PDF
    This paper presents the criteria for the shear design of high strength concrete (HSC) beams in moment resisting frames (MRFs). The formulation of an analytical model is provided for the case of beams with longitudinal reinforcement in the presence of transverse stirrups. Themodel is of additive type, in themeaning that the shear resistance of the beamis evaluated as the sumof several contributions. In particular, the contribution of concrete, longitudinal rebars, and transversal reinforcement are taken into account. Furthermore, for assessing the concrete contribution, a classical approach is followed, according to which two effects arise in the shear mechanism: the arc and the beam effect. The features of these two resisting mechanisms are particularized to the case of HSC in steel reinforced beams and the maximum concrete contribution is limited to the maximum compressive strength of the concrete strut in biaxial state of stress. Moreover, for the evaluation of the resistance contribution of the longitudinal steel rebars in tension, the model takes into account the residual bond adherence between HSC and steel reinforcement and the spacing between subsequent cracks. The results are compared with the prescriptions currently provided in the main building codes and with different analytical models existing in the literature. For the comparison, the analytical expressions are applied to a set of experimental data available in the literature and design observations are made on the geometrical percentage of steel bars, the resistance of materials, the residual bond stress and the depth-to-shear span ratio

    Diffuse stellar component in galaxy clusters and the evolution of the most massive galaxies at z<~1

    Get PDF
    The high end of the stellar mass function of galaxies is observed to have little evolution since z~1. This represents a stringent constraint for merger--based models, aimed at explaining the evolution of the most massive galaxies in the concordance LambdaCDM cosmology. In this Letter we show that it is possible to remove the tension between the above observations and model predictions by allowing a fraction of stars to be scattered to the Diffuse Stellar Component (DSC) of galaxy clusters at each galaxy merger, as recently suggested by the analysis of N-body hydrodynamical simulations. To this purpose, we use the MORGANA model of galaxy formation in a minimal version, in which gas cooling and star formation are switched off after z=1. In this way, any predicted evolution of the galaxy stellar mass function is purely driven by mergers. We show that, even in this extreme case, the predicted degree of evolution of the high end of the stellar mass function is larger than that suggested by data. Assuming instead that a significant fraction, ~30 per cent, of stars are scattered in the DSC at each merger event, leads to a significant suppression of the predicted evolution, in better agreement with observational constraints, while providing a total amount of DSC in clusters which is consistent with recent observational determinations.Comment: 5 pages, figures included; ApJ Letters, in press. Revision: reference adde

    In-out versus out-in technique for ACL reconstruction. a prospective clinical and radiological comparison

    Get PDF
    Background: Several studies have recently shown better restoration of normal knee kinematics and improvement of rotator knee stability after reconstruction with higher femoral tunnel obliquity. The aim of this study is to evaluate tunnel obliquity, length, and posterior wall blowout in single-bundle anterior cruciate ligament (ACL) reconstruction, comparing the transtibial (TT) technique and the out–in (OI) technique. Materials and methods: Forty consecutive patients operated on for ACL reconstruction with hamstrings were randomly divided into two groups: group A underwent a TT technique, while group B underwent an OI technique. At mean follow-up of 10 months, clinical results and obliquity, length, and posterior wall blowout of femoral tunnels in sagittal and coronal planes using computed tomography (CT) scan were assessed. Results: In sagittal plane, femoral tunnel obliquity was 38.6 ± 10.2° in group A and 36.6 ± 11.8° in group B (p = 0.63). In coronal plane, femoral tunnel obliquity was 57.8 ± 5.8° in group A and 35.8 ± 8.2° in group B (p = 0.009). Mean tunnel length was 40.3 ± 1.2 mm in group A and 32.9 ± 2.3 mm in group B (p = 0.01). No cases of posterior wall compromise were observed in any patient of either group. Clinical results were not significantly different between the two groups. Conclusions: The OI technique provides greater obliquity of the femoral tunnel in coronal plane, along with satisfactory length of the tunnel and lack of posterior wall compromise. Level of evidence: II, prospective study

    Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein.

    Get PDF
    The three-dimensional structures of bovine plasma retinol-binding protein (bRBP) complexed with retinol (space group P2(1)2(1)2(1), a = 46.08, b = 49.12, c = 76.10 A) and of the unliganded protein prepared in vitro by extracting retinol with ethyl ether (space group P2(1)2(1)2(1), a = 46.55, b = 48.97, c = 76.87 A) have been solved at 1.9 and 1.7 A resolution, respectively. The final crystallographic R factors are 0.190 for holobRBP and 0.196 for the unliganded bRBP. The model for the bovine holoprotein is quite similar to that of the human protein, with which it exhibits 92% sequence similarity. The root mean square deviation between the alpha-carbons in the two proteins is 0.31 A. The retinol binding site is almost completely preserved. The loops that surround the opening of the beta-barrel are also particularly conserved, in contrast with the presence of several substitutions in parts of the RBP molecule opposite the opening of the calyx that binds retinol. Despite the fact that unliganded bovine RBP was prepared and crystallized using procedures completely different from those used to obtain the unliganded human RBP, the conformational differences between unliganded and liganded forms of bRBP are almost identical to those found previously between the same forms of human RBP. They mainly involve a few residues in the region extending from amino acid residues 32 to 37. Therefore, similar differences are very likely to exist between holoRBP and the physiologically occurring apoprotein. A not yet identified electron density, different in shape and orientation from retinol, also occupies the central cavity of the beta-barrel in the unliganded bRBP, as found for unliganded human RBP. The functional consequences of the conformational change induced by the removal of retinol on the interaction between RBP and transthyretin, coupled with the conservation of the entrance loops of the beta-barrel in mammalian RBPs, are consistent with their participation in molecular interactions
    • …
    corecore