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Abstract-In the present paper, an analytical model is proposed that is able to determine the shear resistance of high strength 

reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on the evaluation of the 

resistance contribution due to beam and arch actions. For the resistance contribution of the main bars in tension the residual bond 

adherence of steel bars and the crack spacing of R.C. beams are considered. The compressive strength of the compressed arch is also 

verified by taking into account of the biaxial state of stresses.  

The model was verified on the basis of experimental data available in the literature and it is able to include the following 

variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - 

crack spacing; - tensile stress in main bars; - residual bond resistance;- size effects. Finally, some of the more recent analytical 

expressions able to predict the shear and the flexural resistance of concrete beams are mentioned and a comparison is made with 

experimental data. 
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I. INTRODUCTION 

Reinforced Concrete (RC) is being used extensively in the construction industry all over the world. The adoption of High 

Strength Concrete (HSC) has increased thanks to its obvious advantages: increased modulus of elasticity, chemical resistance, 

freeze thaw resistance, lower creep, lower drying shrinkage and lower permeability, to name a few. HSC is usually 

proportioned with a low water-to-cementitious material ratio and has high compressive strength in the range of 50 to 100 MPa. 

The supplementary cementitious materials may include blast furnace slag, fly ash, or silica fume, which are used either as 

cement replacement or as additives to the concrete mixture.  

Complete knowledge of HSC properties and bond and anchorage characteristics is essential for evaluating structural 

response and behavior under monotonic and cyclic loads. In the presence of shear, beam flexural strength may be greatly 

reduced with respect to the pure flexure case, and failure may occur in a brittle way and without warning signs [1]. Due to the 

complexity of the phenomenon, much research has been addressed to evaluating the resisting mechanisms of only 

longitudinally reinforced beams, currently called concrete mechanisms [2-5]. The strength provided by any transverse 

reinforcement, which is constituted by stirrups in almost every study, is hence taken into account by adding the contribution of 

the truss mechanism to that of the concrete mechanisms. Some recent investigations [6-8] have shown that the expressions 

currently used for evaluating the shear strength can give unconservative predictions when applied to beams made up of HSC 

and so far the main building codes do not give specific design rules for such beams. A reliable expression for computing the 

shear strength of only longitudinally reinforced HSC beams has recently been proposed by the authors [3, 5]. A formula for the 

shear strength of HSC beams with stirrups is presented here. Design procedures proposed for regulatory standards should be 

safe, correct in concept and simple to understand, and should not necessarily add to either design or construction costs. These 

procedures are most effective if based on relatively simple conceptual models rather than complex empirical equations [9]. 

Hence, many equations have been proposed to estimate the ultimate and cracking shear strength of RC beams. Among them 

are Zsutty’s equation [10], deduced by multiple regression analysis; Bazant’s equation [5] (derived by Bazant and Kim [11]) 

which takes into account the size effect based on non-linear fracture mechanics; the CEB-FIP model code equation, introduced 

empirically; the formula of Japan Concrete Generally, in which the nominal shear strength of RC beams with stirrups is 

composed of two components: the resistance of stirrups resulting from the truss action and the concrete resistance. Shear 

design codes require a simple means of computing a realistic Vc term, the additional concrete contribution as a function of the 

shear stress level. This so-called concrete contribution is important in the design of beams where the factored shear force is 

near the value of the shear force required to produce diagonal tension cracking. This term is necessary for the economic design 

of beams and slabs with little or no shear reinforcement. In the previous study, Arslan’s cracking shear strength equations [6] 

performed almost as well as the ACI 318 simplified equation [9] in terms of coefficient of variation and the cracking shear 

strength predicted by ACI 318 [9] tend to be more conservative than that obtained with Arslan’s equations [6] in terms of mean 

value. In this study, Arslan’s cracking shear strength equations [6] are used to take into account the concrete contribution while 

the contribution of stirrups is added to the concrete contribution to obtain the shear strength of RC beams. The proposed 
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equation is justified comparing the results of existing shear tests on RC beams with stirrups and predicted values obtained with 

the current model.  

II. ANALYTICAL EXPRESSIONS FOR PREDICTION OF FLEXURAL AND SHEAR STRENGTH OF HSC BEAMS  

A. Flexural Strength 

All codes distinguish the case of over-reinforced and under-reinforced cross-section. Beams designed in practice are under-

reinforced and their flexural strength is controlled by the yield force in the tensile steel. In these cases, most of the current 

codes utilize the stress-block approach for the determination of the ultimate flexural capacity of R.C. sections and neglect the 

presence of compressed bars.  

From the translation and rotation equilibrium of internal forces shown in Fig. 1, we obtain, with reference to the symbols 

utilized in the same figure, the position of the neutral axis xc and the ultimate flexural strength Mu in the form: 
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  cysu xdfAM  50.0  (2) 

As being the area of longitudinal tensile bars, b the width of the beam, d the effective depth and  the stress block 

coefficients. Table 1 gives the most commonly utilized values for  and  and for the ultimate compressive strain of concrete 

cu.  
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Fig. 1 Flexural-to-shear interaction model 

TABLE 1 STRESS-BLOCK PARAMETERS FOR HSC 

Code   cu 

A318-08 (2008) 0.85 
'008.009.1 cf
 

0.0030 

CAN3-A23-3-(2004) 
'0015.085.0 cf
 

'0025.097.0 cf
 

0.0035 

Eurocode 2 (2004) 0.85 
500

9.0
'

cf


 

0.0035 

 

Bae and Bayrak (2003) 
 70004.085.0 '  cf  

 30004.085.0 '  cf  

0.0025  MPafc 55'   

0.0030 
 MPafc 55' 
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If in Eqs. (1) and (2), we introduce the mechanical ratio of the main steel l  defined as
'

c
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 , with f’c the 

compressive cylindrical strength of the concrete proves to be the following:  
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The arm of the internal forces can be expressed as: 
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The application of Eq. (3) is subject to the condition that:  
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Eq. (6) is verified when the steel bars are considered to have yielded and the concrete to be crushed.  

Substituting Eq. (6) in Eq. (3) gives the limit geometrical ratio of the longitudinal steel: 
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B. Shear Strength 

For the concrete shear resistance contribution ACI 318 [9] suggests:  
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30.02.17157.0 ccuc f
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    in S.I. units (8) 

For the stirrup contribution ACI 318 [9] considers stirrups to have yielded and the main crack to be inclined 45°, giving: 
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Therefore the shear strength is expressed as: 

 
usucu v  (10) 

The CAN3 (2004) shear provisions [12] are based on the shear resisting mechanism consisting in a free body diagram of 

the end portion of a beam. This portion cuts the flexural compression region and the longitudinal reinforcement and stirrups 

following the diagonal shear crack.  

If the dowel action is neglected, the shear strength equation is:  

 '' 25.0cot ccywswsccuc fffv     in S.I. units (11) 

where sc  ,  are material reduction factors for concrete and steel stirrups. 

 represents the ability of the member to resist aggregate interlock stresses and  is the angle of principal compressive 

stresses and indicates how many stirrup legs will cross the crack. 
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As stressed in [13] for  we can assume (in an approximate way) the expression: 
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and for the expression 
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According to Eurocode 2 [14] adopting the variable truss angle method the shear strength can be assumed as:  
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 with 5.2cot4.0  g  (16) 

Some other simple and interesting expressions are those in [6-8].  

Reference [8] shows that the nominal shear stress at diagonal tension cracking is the product of the ratio of the neutral axis 

depth to the effective depth of the beam and the splitting tensile strength of the concrete. The problem of the size effect on the 

shear strength of beams comes down to the problem of the size effect on the splitting tensile strength of the concrete. The 

contribution of stirrups which are assumed to have yielded is considered in the splitting region and the expression of the shear 

strength proves to be: 
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Reference [6] is modifying the original approach of [4], calculates the shear strength of HSC slender beams considering the 

stirrups to have yielded and the main crack inclined 45°, giving:  

   ywswccuc fffv  
65.0''

02.012.0  (19) 

Finally, according to [7] the shear strength can be calculated as: 
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with da the maximum aggregate size and a the shear span. 
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C. Proposed Model  

According to [11], to calculate the bearing capacity in shear of reinforced concrete beams, it is possible to sum the 

resistance contributions due to the beam and arch actions. The arch and beam contributions are identified as shown in Fig. 1, 

by imposing the equilibrium conditions of a portion of the beam comprised between the support and the loaded section (shear 

span a). With reference to the symbols utilized in Fig. 1 the bending moment M and the shear force V at any given cross-

section can be related to the axial force T in the longitudinal bar and to the internal arm jd by means of: 

 jdTxVM   (21) 

Moreover, the shear force V is related to the variation in M by the relationship: 
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obtaining by means of Eq. (22) the two fundamental resistance contributions well known in the literature as beam effect (jd 

constant) and arch effect (jd variable). 

From Eq. (22) it emerges that the resistance contribution due to the beam effect is defined by: 
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in which j0 takes on a constant value and the variation in the moment M is due to T. 

Referring to Fig. 2, which highlights the contribution due to the beam effect, denoted as V1, it has to be observed that dT/dx 

can be expressed in terms of residual splitting bond stresses qres transmitted by the longitudinal bar.  

C

T

srm

qres

v

va

d

c

D

T+dT T
qres

dx

c

D

T+dT T
qres

dx

 
Fig. 2 Equilibrium of a longitudinal bar between two successive cracks 

Considering a beam portion of length dx, the equilibrium of the internal forces (T and T+dT) gives the following:  
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Di being the diameter of the i-th bar belonging to the main reinforcements of the area As.  

Therefore utilizing Eq. (23) and Eq. (24) we obtain 
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On the basis of Eq. (24) and Eq. (25) we then obtain the following: 
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Bond splitting failure with constant bond resistance is assumed here. In the case of ordinary concrete it was shown [15] that 

the bond stress qb can be assumed to be proportional to the square root of the cylindrical compressive resistance f’c as is done 

in [9]. Another code [14] also suggests assuming the bond stress to be proportional to the power 1/3.  

In the case of HSC it was demonstrated by Harajili et al. [16] that the bond splitting resistance between reinforcing bars and 

concrete can be assumed as: 
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 being the cover of the longitudinal bars. In the following section for simplicity’s sake we assume 1
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We can introduce the equivalent diameter of the longitudinal bars defined as: 
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Substituting Eq. (29) into Eq. (26) and taking Eq. (27) into account gives: 
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Similar expressions are also obtained in [2, 8, 17].  

Reference [17] suggests calculating the contribution in shear strength due to bond splitting failure as: 

 
tc fv  33.02   (31) 

ft being the tensile strength of the concrete. If ft is assumed as in the ACI [9] code in the form: 

 '

'3.0 ct ff    (MPa) (32) 

Substituting Eq. (32) into Eq. (31) gives:  

 '33.06.0 cc fv    (33) 

From Eq. (33) it emerges that the shear strength depends on the geometrical ratio of the main steel and on the square root of 

the compressive strength of concrete, as is also observed utilizing Eq. (30). 

Analogously, [2] assuming a splitting bond failure occurring when the circumferential tensile stress reaches the tensile 

strength of the concrete, obtains: 

 '2.0 cc fv   (34) 

Reference [9] utilizes Eq. (34) but assumes 1/7 instead of 0.2.  

From the comparison between Eq. (34), Eq. (33) and Eq. (30) shown graphically in Fig. 3, it emerges that for low 

percentages of steel the shear strength is overestimated while for >0.025 in the limit 
'2.0 cf  appears appropriate. 
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Fig. 3 Variation in shear strength due to bond splitting versus geometrical ratio of steel bars  

The resistance contribution in the arch mechanism can be evaluated, with reference to the mechanism shown in Fig. 1, by 

relating the shear force V2 to the variation in j and by using the following relation: 

 

xd

jd
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To define Eq. (35) it is necessary to establish a possible variation law of j with variation in x. As originally suggested in 

[11], the following can be assumed: 
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x being measured starting from the support. Deriving Eq. (36) with respect to x, the following relation can be obtained: 
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In Eq. (37) if = 1 is assumed, as suggested in [18], this gives the following: 
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The steel contribution is  

 dbρσT ss   (39) 

with s the stress in the longitudinal bar.  

This stress can be related to the bond residual resistance by considering the equilibrium of internal forces in the crack 

spacing srm (see Fig. 3). 

 

 
2

4
isiresirm DDqs


  (40) 

 

 




n

i i

resirm
s

D

qs4
  (41) 

srm being the cracking spacing determined as in [14]: 
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with 
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Substituting Eq. (43) in Eq. (42) and utilizing Eq. (41) gives: 
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Introducing Eq. (41) and Eq. (29) in Eq. (44) gives: 
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Finally, the shear resistance is obtained by the sum of Eq. (30) and Eq. (45): 
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Substituting expression of qres in Eq. (46) gives: 
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If for example we consider a beam with d=600 mm, minimum a/d=2, srm=50 mm, the second term of Eq. (47) proves to be 

0.09, which is negligible if compared with 0.886. To take the size effect into account the expression of  proposed in [8] (see 

Eq. (17)) was assumed. 

It has to be stressed that if in the arch model the resistance is governed by the crushing of concrete, an upper limit for the 

shear strength (Eq. (47)) has to be taken into account. By imposing the failure of the arch in compression and by relating the 

axial force in the arch with the shear force at the support it is possible to derive the ultimate shear strength related to the 

crushing of the concrete arch.  

The ultimate axial force in the concrete strut is:  

  cos'  ccu xbfN  (48) 

  being the softening coefficient assumed as in the Swiss design code [19] in the form: 
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The equilibrium of the forces at the support gives: 

 sin uu NV  (51) 

and therefore the ultimate shear stress related to the arch crushing: 
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At least, the shear resistance given by Eq. (47) should be lower than the value given by Eq. (52) to avoid premature 

crushing of the compressed arch. 
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The values derived from Eq. (52) are in agreement with the values suggested by ACI 318 [9] for the upper limit of the 

shear strength of cuc fv  3.0  as shown in Fig. 4. 
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Fig. 4 Variation in shear strength due to concrete crushing versus geometrical ratio of steel bars 

By utilizing the approach of Hong and Ha [2] the shear strength associated with the crushing of the compressed strut 

(assumed to be reduced in area) proves to be: 

 
    

a

d
fv cuc  22' 1175.0   (53) 

with the neutral axis position expressed as: 

 37.1    (54) 

Eq. (53), for a practical range of a/d between 2 and 6 and up to 3%, gives results in the same range as Eq. (52) and the 0.3 

limit value given by ACI 318 [9] proves to be the upper limit for <0.025. 

In the presence of stirrups the shear strength contribution due to the stirrups is calculated, as in ACI 318 [9], in the form:  

 

ywswys
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st ff
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A
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fyw being the yielding stress of the stirrups, Ast the area of the two legs of one stirrup and 
sb

Ast
sw


 . 

III. EXPERIMENTAL VALIDATION  

In this section, a validation of the equations mentioned for flexural strength is first of all provided, followed by a validation 

of the shear strength with reference to available experimental data. 

For the experimental validation of flexural capacity, 48 data from [20-23] were utilized. No safety factors were utilized in 

the application of code expressions. Using Eq. (7) it emerges that all data refer to under-reinforced beams. The data utilized 

had: - compressive concrete strength between 36 and 107 MPa; -effective depth between 215 and 264 mm; - between 0.76 

and 3.61%; - fy between 300 and 579 MPa.  

Table 2 gives the mean, standard deviation, correlation factor, minimum, maximum and median factors for all cases 

examined. From the results it emerges that all the expressions utilized underestimate the effective flexural capacity of HSC 

beams and in most of the cases examined conservative results are obtained.  

TABLE 2 FLEXURAL STRENGTH PREVISION 

Code Mexp./Mteo. St.dev Cov. Min. Max. Mediana 

A318-08 1.17 0.49 0.42 0.54 2.58 1.05 

CAN3-A23-3-M24 (1994) 1.34 0.29 0.22 0.50 1.8 1.39 

Eurocode 2 (1994) 1.38 0.29 0.22 0.50 1.80 1.40 

Bae and Bayrak (2003) 1.34 0.29 0.22 0.50 1.80 1.39 
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Fig. 5a) shows the variation in ultimate experimental moment referring to an analytical moment calculated with Bae and 

Bayrak’s coefficients [24], with variation in the compressive strength of the concrete. It has to be stressed that as the concrete 

strength increases a progressive increase in underestimation of moment capacities is observed (see best line fitting), as already 

observed in [25] and explained by early cover spalling in HSC columns.  

Fig. 5b) shows the variation in ultimate experimental moment and analytical moment versus the geometrical ratio. The 

upper limit of 0.0025 indicated by ACI 318 [9] is also given. The results obtained show that the limit of 0.0025 is much too 

conservative to ensure that steel bars yield before crushing of concrete and higher values could be utilized. But the latter choice 

has to be checked very carefully if members have to be designed in seismic areas.  

For experimental validation of shear strength, two sets of data were utilized. The first set of data was the same as utilized in 

[8] and not given here for brevity’s sake; the other set of data collected used were from those of [1, 2, 5, 25, 26, 27]. Reference 

[8] consider 164 data with: - compressive concrete strength between 12.8 and 103 MPa; -  effective depth between 95 and 1200 

mm, - a/d between 2.4 and 5.05;  between 0.5 and 4.54%; - v between 0.06 and 0.84; - fy between 242 and 844 MPa. 51 data 

collected in the current paper had: - compressive concrete strength between 40 and 94 MPa, - effective depth between 160 and 

655 mm; -a/d between 2 and 6; - between 0.6 and 6.64 %, v between 0.08 and 1; fy between 370 and 430 MPa. 

 

a)                   b) 

Fig. 5 Variation in experimental moment versus analytical moment with: a) compressive strength; b) steel percentage 

Fig. 6 shows the variation in ultimate experimental shear strength versus analytical shear strength calculated with all the 

models mentioned here. Table 3 gives mean, standard deviation, correlation factor, minimum, maximum and median factors 

for all cases examined. From the results it emerges that most of the expressions proposed predict the shear strength of HSC 

beams accurately. 

TABLE 3 SHEAR STRENGTH PREVISIO 

Code vexp./vteo. St.dev Cov. Min. Max. Mediana 

A318-08 1.27 0.21 0.16 0.70 1.84 1.29 

CAN3-A23-3-M24 (1994) 1.43 0.36 0.25 0.36 2.52 1.43 

Eurocode 2 (1994) 2.42 0.99 0.40 0.98 7.98 2.27 

Arslan (2008) 1.32 0.38 0.29 0.73 2.25 1.40 

Russo et al. (2013) 1.12 0.211 0.189 0.64 1.61 1.12 

Current model  1.24 0.193 0.145 0.78 1.74 1.27 
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a) 
 

b) 

 

c) 
 

d) 

 

e) 
 

f) 

Fig. 6 Variation in experimental shear stress versus analytical stress according to the following models: a) ACI 318 [9]; b) CSA CAN A23.3 (2004); c) 

Eurocode 2 (2004), d) Russo et al. (2013); e) Arslan (2008); f) proposed model 

Fig. 7 shows the variation in ultimate dimensionless shear stress with respect to cf  versus the geometrical ratio of the 

longitudinal bars. Only cases of beams without stirrups are considered. Analytical prediction with the proposed model and with 

ACI 318 [9] and Hong and Ha [2] models are also given. The results obtained highlight that for a geometrical ratio up to 0.025 

all models are quite conservative and specifically the current model gives safer prediction. 
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Fig. 7 Variation in experimental shear stress versus analytical stress with   

Fig. 8 shows the variation in ultimate dimensionless shear stress with respect to cf2.0  versus the mechanical ratio of 

the stirrups. The choice of cf2.0  was related to the results obtained in the absence of stirrups to be compared with the bond 

failure mode calculated as in [2].  
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In the same graph prediction with the current model and with the Russo et al. [7] and Zararis [8] models are given. The best 

fitting line is also shown. It has to be stressed that all experimental data are in the range expected with the Zararis model [8], 

while in most cases the Russo et al. model [7] overestimates the real shear strength of beams. The proposed model gives the 

most conservative results. 

IV. CONCLUSIONS 

The existing analytical expressions for the calculation of the flexural and shear resistance of high strength reinforced 

concrete beams with stirrups are reviewed. An analytical model for the determination of the maximum shear resistance of 

reinforced concrete beams in the presence of stirrups is presented. The model is based on the determination of the resistance 

contributions due to beam and arch effects including bond splitting and concrete crushing failure, plus stirrup yielding. The 

model was validated on the basis of experimental data given in the literature, showing its capacity to predict the shear 

resistance of beams with good approximation.  
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