27 research outputs found

    REducing INFectiOns thRough Cardiac device Envelope: insight from real world data. The REINFORCE Project

    Get PDF
    Background: Infections resulting from cardiac implantable electronic device (CIED) implantation are severely impacting on patients' and on health care systems. The use of TYRXTM absorbable antibiotic-eluting envelope has proven to decrease major CIED infections within 12 months of CIED surgery. Aims: to evaluate the impact of the envelope use on infection-related clinical events in a real-world contemporary patient population. Methods: Data on patients undergoing CIED surgery were collected prospectively by participating centers of the One Hospital ClinicalService project. Patients were divided into two groups according to whether TYRXTM absorbable antibiotic-eluting envelope was used or not. Results: Out of 1819 patients, 872 (47.9%) were implanted with an absorbable antibiotic-eluting envelope and included in the Envelope group and 947 (52.1%) patients who did not receive an envelope were included in the Control group. Compared to control, patients in the Envelope group had higher thrombo-embolic or hemorrhagic risk, higher BMI, lower LVEF and more comorbidities. During a mean follow-up of 1.4 years, the incidence of infection-related events was significantly higher in the control compared to the Envelope group (2.4% vs 0.8%, p = 0.007). The 5-year cumulative incidence of infection-related events was 8.1% in the control and 2.1% in the Envelope group (HR: 0.34, 95%CI: 0.14-0.80, p = 0.010). Conclusions: In our analysis, the use of an absorbable antibiotic-eluting envelope in the general CIED population was associated with a lower risk of systemic and pocket infection

    Time related variations in stem cell harvesting of umbilical cord blood

    Get PDF
    Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units

    CYP2D6 genotypes in revolving door patients with bipolar disorders: A case series

    Get PDF
    RATIONALE: In psychiatric disorders, interindividual differences in cytochrome P450 (CYP)2D6 (CYP2D6) enzymatic activity could be responsible of adverse drug reactions (ADRs) and therapeutic failures (TFs) for CYP2D6-metabolized drugs, contributing to the periodical hospital readmissions of the revolving door (RD) condition.PATIENT CONCERNS: We investigated CYP2D6 genotypes in a controlled series of 5 consecutive RD patients with Bipolar Disorder (BD).DIAGNOSES: Psychiatric patients affected by Bipolar Disorder.INTERVENTIONS: We defined TFs as a difference at the Brief Psychiatric Rating Scale score \u394BPRS\u200a<\u200a25% at each 1-week of stable treatment, and ADRs as the onset of extrapyramidal symptoms and/or metabolic impairment with weight gain.OUTCOMES: At 3 months, a mean number of 2.75\u200a\ub1\u200a1.26 ADR and a mean \u394BPRS score of 16.07\u200a\ub1\u200a0.05% were observed. At 6 months of follow-up, compared to the only patient without BD (\u394BPRS\u200a<\u200a32.10%), BD patients (n\u200a=\u200a4) showed TFs (\u394BPRS\u200a<\u200a25%). CYP2D6 genotyping revealed intermediate metabolizer phenotypes for BD patients and an extensive metabolizer phenotype for the patient without BD. In BD patients, the ratio of drugs maintained/discontinued for TFs or ADRs was 1.75 for non-CYP2D6 versus 0.33 for CYP2D6 interacting drugs, while the proportion of ADR:TF was 0:4 versus 6:3.LESSONS: Our findings may suggest that CYP2D6 clinically relevant genotypes may be involved in the unwanted outcomes observed in RD patients with BD

    The role of HSP70 on ENPP1 expression and insulin-receptor activation

    No full text
    Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin-receptor (IR) signaling and, when over-expressed, induces insulin resistance in vitro and in vivo. Understanding the regulation of ENPP1 expression may, thus, unravel new molecular mechanisms of insulin resistance. Recent data point to a pivotal role of the ENPP1 3'UTR, in modulating ENPP1 mRNA stability and expression. We sought to identify trans-acting proteins binding the ENPP1-3'UTR and to investigate their role on ENPP1 expression and on IR signaling. By RNA electrophoresis mobility shift analysis and tandem mass spectrometry, we demonstrated the binding of heat shock protein 70 (HSP70) to ENPP1-3'UTR. Through this binding, HSP70 stabilizes ENPP1 mRNA and increases ENPP1 transcript and protein levels. This positive modulation of ENPP1 expression is paralleled by a reduced insulin-induced IR and IRS-1 phosphorylation. Taken together these data suggest that HSP70, by affecting ENPP1 expression, may be a novel mediator of altered insulin signaling. © 2008 Springer-Verlag

    The pharmacogenetic road to avoid adverse drug reactions and therapeutic failures in revolving door patients with psychiatric illnesses: focus on the CYP2D6 isoenzymes

    No full text
    Introduction: A periodical hospital readmission caused by therapeutic failures (TFs) and a worsening of clinical symptoms most often linked to adverse drug reactions (ADRs) are probably the major causes for the so-called revolving door condition in psychiatric illnesses. This review underlined the importance that pharmacogenetic data on cytochrome P450 (CYP), particularly CYP2D6 polymorphisms, may offer for the finger printing of the pharmacological treatment of psychiatric illnesses, given the relevance of this enzyme in metabolizing psychotropic drugs. Areas covered: We searched in the medical literature until July 2016 to review the role of functional variants in the CYP2D6 gene on observed ADRs and TFs in revolving door psychiatric patients. Expert commentary:CYP2D6 gene variants could in part explain the revolving door condition in patients attending a psychiatric setting. The preemptive known CYP genotypes associated to a reduced metabolizer status may help clinical decision-making to avoid concomitant treatments, increasing drug safety, so reducing therapeutic attempts, hospital admission, and the overall costs for the national health services. However, CYP2D6 gene is only a part of a complex mechanism in which genetic and non-genetic factors may take part. A possible role of the intrinsic variability of pharmacodynamics and imponderable environmental factors influencing the revolving door condition cannot be excluded

    The Prognostic Value of ADAMTS-13 and von Willebrand Factor in COVID-19 Patients: Prospective Evaluation by Care Setting

    No full text
    Background: Endothelial dysfunction, coupled with inflammation, induces thrombo-inflammation. In COVID-19, this process is believed to be associated with clinical severity. Von Willebrand factor (VWF), and a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS-13), are strong markers of endothelial dysfunction. We evaluated the impact of the VWF/ADAMTS-13 fraction on COVID-19 severity and prognosis. Materials and methods: A cohort study including 74 COVID-19 patients, with 22 admitted to the intensive care unit (ICU) and 52 to the medical ward (MW), was carried out. We also evaluated, in a group of 54 patients who were prospectively observed, whether variations in VWF/ADAMTS-13 correlated with the degree of severity and routine blood parameters. Results: A VWF:RCo/ADAMTS-13 fraction above 6.5 predicted in-hospital mortality in the entire cohort. At admission, a VWF:RCo/ADAMTS-13 fraction above 5.7 predicted admission to the ICU. Furthermore, the VWF:RCo/ADAMTS-13 fraction directly correlated with C-reactive protein (CRP) (Spearman r: 0.51, p < 0.0001) and D-dimer (Spearman r: 0.26, p = 0.03). In the prospective cohort, dynamic changes in VWF:RCo/ADAMTS-13 and the CRP concentration were directly correlated (Spearman r, p = 0.0014). This relationship was significant in both groups (ICU: p = 0.006; MW: p = 0.02).Conclusions: The present findings show that in COVID-19, the VWF/ADAMTS-13 fraction predicts in-hospital mortality. The VWF/ADAMTS-13 fraction may be a helpful tool to monitor COVID-19 patients throughout hospitalization

    The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis

    No full text
    Abstract Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell–cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways
    corecore