100 research outputs found
Germline and Somatic Pharmacogenomics to Refine Rectal Cancer Patients Selection for Neo-Adjuvant Chemoradiotherapy
Neoadjuvant chemoradiotherapy (nCRT) followed by radical surgery is the standard of care for patients with Locally Advanced Rectal Cancer (LARC). Current selection for nCRT is based on clinical criteria regardless of any molecular marker. Pharmacogenomics may be a useful strategy to personalize and optimize nCRT in LARC. This review aims to summarize the most recent and relevant findings about the role of germline and somatic pharmacogenomics in the prediction of nCRT outcome in patients with LARC, discussing the state of the art of their application in the clinical practice. A systematic literature search of the PubMed database was completed to identify relevant English-language papers published up to January 2020. The chemotherapeutic backbone of nCRT is represented by fluoropyrimidines, mainly metabolized by DPD (Dihydro-Pyrimidine Dehydrogenase,DPYD). The clinical impact of testingDPYD*2A, DPYD*13,c.2846A > Tandc.1236G > A-HapB3before a fluoropyrimidines administration to increase treatment safety is widely acknowledged. Other relevant target genes areTYMS(Thymidylate Synthase) andMTHFR(Methylene-Tetrahydro-Folate Reductase), whose polymorphisms were mainly studied as potential markers of treatment efficacy in LARC. A pivotal role of aTYMSpolymorphism in the gene promoter region (rs34743033) was reported and was pioneeringly used to guide nCRT treatment in a phase II study. The pharmacogenomic analysis of other pathways mostly involved in the cellular response to radiation damage, as the DNA repair and the activation of the inflammatory cascade, provided less consistent results. A high rate of somatic mutation in genes belonging to PI3K (Phosphatidyl-Inositol 3-Kinase) and MAPK (Mitogen-Activated Protein Kinase) pathways, asBRAF (V-raf murine sarcoma viral oncogene homolog B1), KRAS(Kirsten Rat Sarcoma viral oncogene homolog), NRAS(Neuroblastoma RAS viral (v-ras) oncogene homolog),PIK3CA(Phosphatidyl-Inositol-4,5-bisphosphate 3-Kinase, Catalytic Subunit Alpha), as well asTP53(Tumor Protein 53) was reported in LARC. Their pharmacogenomic role, already defined in colorectal cancer, is under investigation in LARC with promising results concerning specific somatic mutations inKRASandTP53, as predictors of tumor response and prognosis. The availability of circulating tumor DNA in plasma may also represent an opportunity to monitor somatic mutations in course of therapy
The risk of cancer progression in women with gynecological malignancies and thrombophilic polymorphisms: a pilot case-control study.
Cancer produces a hypercoagulable state, which might lead to thrombosis, and on contrary, unprovoked venous thromboembolism might be the manifestation of an occult cancer. In this pilot case-control study, we assessed the risk of gynecological malignant diseases related to the presence of the factor V Leiden and prothrombin G20210A polymorphisms. Fifty-two women underwent an operation for gynecological malignancy and were enrolled in the study. Women who underwent an operation for gynecological nonmalignant disease in the same days of cases were considered as controls. The presence of factor V Leiden and prothrombin G20210A was assessed in case and control groups. In all, 7 out of 52 cases were carriers of the 2 polymorphisms compared with 20 out of 198 controls (odds ratio = 1.3; 95% confidence interval, 0.6-3.0). The results were also similar when the risk was considered separately for the site of cancer. As for advanced and metastatic malignancies, the odds ratios were 2.3 (95% confidence interval, 0.9-6.0) and 3.3 (95% confidence interval, 1.0-11), respectively, compared to noncancer patients. When these 2 groups were compared to nonadvanced cancer group, the odds ratios for carriers of polymorphisms were 2.7 (95%confidence interval, 0.7-11.0) and 3.9 (95%confidence interval, 0.8-18.6) for advanced cancer and metastatic malignancies, respectively. Women with factor V Leiden or prothrombin G20210A polymorphisms who developed gynecological malignancy might present with a higher stage of cancer at the time of surgery. Larger case-control studies in similar cohort of patients are needed to confirm these findings
Two-dimensional gel proteome reference map of human small intestine
<p>Abstract</p> <p>Background</p> <p>The small intestine is an important human organ that plays a central role in many physiological functions including digestion, absorption, secretion and defense. Duodenal pathologies include, for instance, the ulcer associated to Helicobacter Pylori infection, adenoma and, in genetically predisposed individuals, celiac disease. Alterations in the bowel reduce its capability to absorb nutrients, minerals and fat-soluble vitamins. Anemia and osteopenia or osteoporosis may develop as a consequence of vitamins malabsorption. Adenoma is a benign tumor that has the potential to become cancerous. Adult celiac disease patients present an overall risk of cancer that is almost twice than that found in the general population. These disease processes are not completely known.</p> <p>To date, a two dimensional (2D) reference map of proteins expressed in human duodenal tissue is not yet available: the aim of our study was to characterize the 2D protein map, and to identify proteins of duodenal mucosa of adult individuals without duodenal illness, to create a protein database. This approach, may be useful for comparing similar protein samples in different laboratories and for the molecular characterization of intestinal pathologies without recurring to the use of surgical material.</p> <p>Results</p> <p>The enrolled population comprised five selected samples (3 males and 2 females, aged 19 to 42), taken from 20 adult subjects, on their first visit at the gastroenterology unit for a suspected celiac disease, who did not turn to be affected by any duodenal pathology after gastrointestinal and histological evaluations. Proteins extracted from the five duodenal mucosal specimens were singly separated by 2D gel electrophoresis. After image analysis of each 2D gel, 179 protein spots, representing 145 unique proteins, from 218 spots tested, were successfully identified by MALDI-TOF ms analysis. Normalized volumes, for each protein, have been reported for every gel. Proteins have been grouped according to their biological/metabolic functions.</p> <p>Conclusion</p> <p>This study represents to date the first detailed and reproducible 2D protein map of human duodenum. Spots identifications, reported in a database, will be helpful to identify the variability in protein expression levels, in isoforms expression, or in post-translational modifications associated to pathology or to a therapy.</p
New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma.
The tyrosine kinase inhibitor (TKI) sorafenib continues to be the anchor drug in the treatment of advanced stage hepatocellular carcinoma (HCC). Other TKIs as well as immune checkpoint inhibitors (ICIs) have also been approved, however the response rates remain poor and heterogeneous among HCC patients, largely due to antitumor drug resistance. Studies aimed at identifying novel biomarkers and developing new strategies to improve the response to current treatment and to overcome drug resistance, are urgently needed. Germline or somatic mutations, neoantigens, and an immunotolerogenic state against constant inflammatory stimuli in the liver, are crucial for the anti-tumor response. A pharmacogenetic approach has been attempted considering germline polymorphisms in genes encoding for proteins involved in drug-targeted pathways. Single gene and comprehensive multi-gene somatic profiling approaches have been adopted in HCC to identify tumor sensitivity scores and immunogenic profiles that can be exploited for new biomarkers and innovative therapeutic approaches. However, the high genomic heterogeneity of tumors and lack of molecularly targeted agents, hamper the discovery of specific molecular markers of resistance to therapy. Adoptive cell therapy with chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens (TAAs) was proposed recently. The specificity of the chosen TAA, an efficient homing of CAR-T cells to the tumor site, and the ability of CAR-T cells to survive in the tumor microenvironment are central factors in the success of CAR-T therapy. The current review describes the principal systemic treatments for HCC and the molecular evidence regarding potential predictive host and somatic genetic markers, as well as the emerging strategy of liquid biopsy for disease monitoring. Novel immunotherapeutic approaches for HCC treatment, including the use of ICIs and CAR-T, as well as strategies to overcome drug resistance, are discussed
Implementation of preemptive testing of a pharmacogenomic panel in clinical practice: Where do we stand?
Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults, and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive preemptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (Ubiquitous Pharmacogenomics-PREPARE study) have provided the first evidence that prospective application of a preemptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered, and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a preemptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin, and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches
Genetic biomarkers for hepatocellular cancer risk in a caucasian population
AIMTo uncover novel genetic markers that could contribute to predicting hepatocellular carcinoma (HCC) susceptibility in Caucasians.METHODSThe present retrospective case-control study compared genotype frequencies between a cohort of HCC cases and two, independent, HCC-free, age/sex-matched control groups. The HCC cohort comprised 192 homogeneous patients that had undergone orthotopic liver transplantation. The first control group comprised 167 patients that were matched to the HCC cohort for the percentage of hepatitis B (HBV) and/or hepatitis C (HCV) infections. A second control group included 192 virus-free, healthy individuals that were used to evaluate the generalizability of the identified predictive markers. All cases and controls were Caucasian. The three study populations were characterized with a panel of 31 markers derived from 21 genes that encoded key proteins involved in hepatocarcinogenesis-related pathways. The study end-point was to assess the association between genetic variants and HCC onset.RESULTSFive genetic markers were identified as risk factors for HCC in high-risk patients infected with HBV/HCV. According to a dominant model, reduced HCC risk was associated with three polymorphisms: ERCC1 rs3212986 (OR = 0.46, 95% CI: 0.30-0.71, P = 0.0005), GST-P1 rs1138272 (OR = 0.41, 95% CI: 0.21-0.81, P = 0.0097), and CYP17A1 rs743572 (OR = 0.50, 95% CI: 0.31-0.79, P = 0.0032). Conversely, according to a recessive model, increased HCC risk was associated with two polymorphisms: XRCC3 rs1799794 (OR = 3.70, 95% CI: 1.02-13.39, P = 0.0461) and ABCB1 rs1128503 (OR = 2.06, 95% CI: 1.18-3.61, P = 0.0111). These associations remained significant in a subgroup analysis, where patients were stratified according to viral status (HBV-or HCV-positive serology). Two variants exhibited a serology-specific effect: ABCB1 rs1128503 (OR = 4.18, 95% CI: 1.55-11.29, P = 0.0048) showed an effect in the HBV-positive subgroup; and ERCC1 rs3212986 (OR = 0.33, 95% CI: 0.18-0.60, P = 0.0003) showed an effect in the HCV-positive subgroup. Among the five markers identified, ERCC1 rs3212986 (OR = 0.43, P < 0.0001) and CYP17A1 rs743572 (OR = 0.73, P = 0.0310) had a different distribution in patients with HCC compared to healthy individuals. With a recursive partitioning approach, we also demonstrated that significant gene-gene interactions between ERCC1 rs3212986, CYP17A1 rs743572, GST-P1 rs1138272, and the previously described UGT1A7*3 predictive marker, played a role in the complex trait of HCC susceptibility.CONCLUSIONWe identified five polymorphisms and interactions that contributed crucially to predicting HCC risk. These findings represented an important step towards improving HCC diagnosis and management
Impact of ABCG2 and ABCB1 Polymorphisms on Imatinib Plasmatic Exposure: An Original Work and Meta-Analysis
Adequate imatinib plasma levels are necessary to guarantee an efficacious and safe treatment in gastrointestinal stromal tumor (GIST) and chronic myeloid leukemia (CML) patients. Imatinib is a substrate of the drug transporters ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) that can affect its plasma concentration. In the present study, the association between three genetic polymorphisms in ABCB1 (rs1045642, rs2032582, rs1128503) and one in ABCG2 (rs2231142) and the imatinib plasma trough concentration (Ctrough) was investigated in 33 GIST patients enrolled in a prospective clinical trial. The results of the study were meta-analyzed with those of other seven studies (including a total of 649 patients) selected from the literature through a systematic review process. The ABCG2 c.421C>A genotype demonstrated, in our cohort of patients, a borderline association with imatinib plasma trough levels that became significant in the meta-analysis. Specifically, homozygous carriers of the ABCG2 c.421 A allele showed higher imatinib plasma Ctrough with respect to the CC/CA carriers (Ctrough, 1463.2 ng/mL AA, vs. 1196.6 ng/mL CC + AC, p = 0.04) in 293 patients eligible for the evaluation of this polymorphism in the meta-analysis. The results remained significant under the additive model. No significant association could be described between ABCB1 polymorphisms and imatinib Ctrough, neither in our cohort nor in the meta-analysis. In conclusion, our results and the available literature studies sustain an association between ABCG2 c.421C>A and imatinib plasma Ctrough in GIST and CML patients
Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma
Introduction: A new arm of the renin–angiotensin system (RAS) has been recently characterized; this includes angiotensin converting enzyme (ACE)2 and angiotensin (Ang)1-7, a heptapeptide acting through the Mas receptor (MasR). Recent studies show that Ang1-7 has an antiproliferative action on lung adenocarcinoma cells. The aim of this study was to characterize RAS expression in human colon adenocarcinoma and to investigate whether Ang1-7 exerts an antiproliferative effect on human colon adenocarcinoma cells. Materials and methods: Gene, protein expression and enzymatic activity of the main components of the RAS were determined on non-neoplastic colon mucosa as well as on the tumor mass and the mucosa taken 5 cm distant from it, both collected from patients with colon adenocarcinoma. Two different human colon cancer cell lines were treated with AngII and Ang1-7. Results: The novel finding of this study was that MasR was significantly upregulated in colon adenocarcinoma compared with non-neoplastic colon mucosa, which showed little or no expression of it. ACE gene expression and enzymatic activity were also increased in the tumors. However, AngII and Ang1-7 did not have any pro-/antiproliferative effects in the cell lines studied. Conclusions: The data suggest that upregulation of the MasR could be used as a diagnostic marker of colon adenocarcinoma
Association of ADME gene polymorphisms on toxicity to CDK4/6 inhibitors in patients with HR+ HER2- metastatic breast cancer
: A wide interindividual variability in therapeutic response to cyclin-dependent kinases 4 and 6 inhibitors (CDKis) palbociclib, ribociclib and abemaciclib, among patients with HR+/HER2- metastatic breast cancer has been reported. This study explored the impact of genetic polymorphisms in ADME genes (responsible for drug absorption, distribution, metabolism, and elimination) on CDKis safety profiles in 230 patients. Selected endpoints include grade 3/4 neutropenia at day 14 of the first treatment cycle, early dose-limiting toxicities (DLTs), and dose reductions within the initial three cycles. Our analysis revealed associations between these endpoints and polymorphisms in CYP3A4, CYP3A5, ABCB1, and ABCG2 genes. Their impact on CDKis plasma concentrations (Ctrough) was also examined. Specifically, ABCB1 c.1236C>T and c.2677C>T polymorphisms correlated significantly with grade 3/4 neutropenia at day 14 (OR 3.94, 95% CI 1.32-11.75; p = 0.014 and OR 3.32, 95% CI 1.12-9.85; p = 0.030). Additionally, ABCB1 c.3435C>T was associated with an elevated risk of early DLTs and dose reductions (OR 3.28, 95% CI 1.22-8.84, p = 0.019; OR 2.60, 95% CI 1.20-5.60, p = 0.015). Carriers of the CYP3A4*22 allele also demonstrated in univariate a higher risk of early DLTs (OR 3.10, 95% CI 1.01-9.56, p = 0.049). Furthermore, individuals with the ABCB1 1236T-3435T-2677T(A) variant haplotype exhibited significant associations with grade 3/4 neutropenia at day 14 (OR 3.36, 95% CI 1.20-9.41; p = 0.021) and early DLTs in univariate (OR 3.08, 95% CI 1.19-7.95; p = 0.020). Homozygous carriers of the ABCB1 T-T-T(A) haplotype tended to have a higher mean ribociclib Ctrough (934.0 ng/mL vs. 752.0 ng/mL and 668.0 ng/mL). Regardless preliminary, these findings offer promising insights into the role of pharmacogenetic markers in CDKis safety profiles, potentially contributing to address the interindividual variability in CDKis responses
IL15RA and SMAD3 Genetic Variants Predict Overall Survival in Metastatic Colorectal Cancer Patients Treated with FOLFIRI Therapy: A New Paradigm
Simple SummaryThere is an increasing scientific interest in the study of the interaction between the immune system and drugs in cancer that can affect the efficacy of an anti-cancer treatment. This study was undertaken to better understand if the genetic characteristic of a cancer patient's immune system can predict the tumor response to the treatment and the duration of survival. The topic was studied on 335 metastatic colorectal cancer patients treated with a first-line chemotherapy (FOLFIRI regimen, irinotecan-5-fluorouracil-leucovorin). The research highlighted two markers, IL15RA-rs7910212 and SMAD3-rs7179840, significantly associated with the patient's survival. When considering IL15RA-rs7910212 and SMAD3-rs7179840 in combination with other two genetic markers previously investigated (NR1I2-rs1054190, VDR-rs7299460), we built up a highly predictive genetic score of survival. The herein identified markers must be further validated, but still represent good candidates to understand how much a patient with a metastatic colorectal cancer can benefit from a chemotherapy with FOLFIRI regimen.A new paradigm in cancer chemotherapy derives from the interaction between chemotherapeutics, including irinotecan and 5-fluorouracil (5-FU), and the immune system. The patient's immune response can modulate chemotherapy effectiveness, and, on the other hand, chemotherapeutic agents can foster tumor cell immunogenicity. On these grounds, the analysis of the cancer patients' immunogenetic characteristics and their effect on survival after chemotherapy represent a new frontier. This study aims to identify genetic determinants in the immuno-related pathways predictive of overall survival (OS) after FOLFIRI (irinotecan, 5-FU, leucovorin) therapy. Two independent cohorts comprising a total of 335 patients with metastatic colorectal cancer (mCRC) homogeneously treated with first-line FOLFIRI were included in the study. The prognostic effect of 192 tagging genetic polymorphisms in 34 immune-related genes was evaluated using the bead array technology. The IL15RA rs7910212-C allele was associated with worse OS in both discovery (HR: 1.57, p = 0.0327, Bootstrap p-value = 0.0280) and replication (HR: 1.71, p = 0.0411) cohorts. Conversely, SMAD3 rs7179840-C allele was associated with better OS in both discovery (HR: 0.65, p = 0.0202, Bootstrap p-value = 0.0203) and replication (HR: 0.61, p = 0.0216) cohorts. A genetic prognostic score was generated integrating IL15RA-rs7910212 and SMAD3-rs7179840 markers with inflammation-related prognostic polymorphisms we previously identified in the same study population (i.e., PXR [NR1I2]-rs1054190, VDR-rs7299460). The calculated genetic score successfully discriminated patients with different survival probabilities (p < 0.0001 log-rank test). These findings provide new insight on the prognostic value of genetic determinants, such as IL15RA and SMAD3 markers, and could offer a new decision tool to improve the clinical management of patients with mCRC receiving FOLFIRI
- …