46 research outputs found

    Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins

    Get PDF
    Green fluorescent protein (GFP) allows the direct visualization of gene expression and the subcellular localization of fusion proteins in living cells. The localization of different GFP fusion proteins in the secretory system was studied in stably transformed Arabidopsis plants cv. Wassilewskaja. Secreted GFP (SGFP) and GFP retained in the ER (GFP‐KDEL) confirmed patterns already known, but two vacuolar GFPs (GFP‐Chi and Aleu‐GFP) labelled the Arabidopsis vacuolar system for the first time, the organization of which appears to depend on cell differentiation. GFP stability in the vacuoles may depend on pH or degradation, but these vacuolar markers can, nevertheless, be used as a tool for physiological studies making these plants suitable for mutagenesis and gene‐tagging experiment

    Efficacy of 1998 <i>vs</i> 2006 first-line antiretroviral regimens for HIV infection: an ordinary clinics retrospective investigation

    Get PDF
    Purpose: The evidence suggesting increased HAART efficacy over time comes from randomized trials or cohort studies. This retrospective multicenter survey aimed to assess the variation over time in the efficacy and tolerability of first-line HAART regimens in unselected patients treated in ordinary clinical settings. Methods: Retrospective analysis of data of all patients starting first-line HAART regimens in 1998 and 2006 at adhering centers in the Italian CISAI group. Results: For the 543 patients included, mean age was 39.1 Âą 9.8y in 1998 and 41.0 Âą 10.7y in 2006 (p=0.03), with a similar proportion of males. Baseline mean log10 HIV-RNA was 4.56 Âą 0.97 copies/mL in 1998 vs 4.91 Âą 0.96 copies/mL in 2006 (p&lt;0.001); baseline mean CD4 T-cell counts were 343 Âą 314/mm3 in 1998 vs 244 Âą 174/mm3 in 2006 (p&lt;0.001). The following outcomes were significantly improved at 48w in 2006: proportion with undetectable HIV-RNA (86.3% vs 58.0%; p&lt;0.001); mean increase in CD4 T-cells count (252 Âą 225 vs 173 Âą 246; p&lt;0.001); HAART modification (20.1% vs 29.2%; p=0.02); HAART interruption (7.3% vs 14.6%; p=0.01); proportion reporting optimal adherence (92.2% vs 82.7%, p=0.03). No differences were observed in the prevalence of grade 3-4 WHO toxicities (26.4% vs 26.6%; p=0.9). Multivariate logistic regression showed that being treated in 1998 remained an independent predictor of virological failure after several adjustments, including adherence. Conclusions: Our data from patients not included in clinical trials or cohort studies provide an additional line of evidence that the effectiveness of HAART significantly improved in 2006. Treated patients, however, were significantly older and more frequently late HIV presenters in 2006 than in 1998.</br

    Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy)

    Get PDF
    Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-DentametŽ-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of DentametŽ at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento

    Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Get PDF
    BACKGROUND: Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. RESULTS: Total carotenoids progressively increased during fruit ripening up to ~55 Οg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. CONCLUSIONS: Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening

    Antioxidants in Varieties of Chicory ( Cichorium intybus

    Get PDF
    We report the hydrophilic and lipophilic antioxidant activities, as well as the total phenol, flavonoid, tocochromanol (tocopherol and tocotrienol), and carotenoid contents in the edible portion of wild and cultivated varieties of chicory (Cichorium intybus L.) and in the basal rosette leaves of the wild species of poppy (Papaver rhoeas L.), known by natives as “paparina,” collected in the countryside of Salento (South Apulia, Italy). We analyzed (1) two cultivars of chicory, the “Catalogna” harvested in the area between S. Pietro Vernotico and Tuturano (Brindisi) and the “Otrantina” harvested in Otranto (Lecce); (2) two wild chicory ecotypes harvested in S. Pietro Vernotico (Brindisi) and Statte (Taranto), respectively; (3) the basal leaves of wild poppy harvested in Sternatia (Lecce). In all samples, our results showed that the hydrophilic antioxidant activity is, generally, higher than the lipophilic activity. Poppy leaves exhibited the highest hydrophilic and lipophilic antioxidant activities and the highest concentration of total phenols and flavonoids. Tocopherols were detected only as traces. Among the extracted carotenoids, lutein and β-carotene were the most abundant in all analyzed samples. Total carotenoid content was greater in wild than in cultivated plants

    A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy)

    Get PDF
    The bacterium Xylella fastidiosa subsp. pauca is associated with the “olive quick decline syndrome” in the Apulia region of southern Italy. To investigate control of this phytopathogen, a compound containing zinc and copper complexed with citric-acid hydracids (Dentamet®) was evaluated for in vitro and in planta bactericidal activity. Confocal laser scanning microscopy, fluorescent quantification and atomic emission spectroscopy were then used to determine if the compound reached the xylem networks of leaves, twigs and branches of olive, to release zinc and copper within the xylem. A 3-year field trial in an olive orchard containing mature Cellina di Nardò and Ogliarola salentina olive trees, and officially declared infected by X. fastidiosa subsp. pauca,was also carried out o to determine if the compound affected severity of the disease. Each year, from early April to October (excluding July and August), six spray treatments of 0.5% (v:v) Dentamet® were applied on the olive tree crowns. The compound reduced severity of symptoms in both cultivars. Most untreated trees died by the end of the trial, whereas all treated trees survived with good vegetative status as assessed by a normalized difference vegetation index. Quantitative real-time PCR was performed from June 2016 to September 2017, following the official procedures established by the European and Mediterranean Plant Protection Organization. The analysis revealed a statistically significant reduction of X. fastidiosa cell densities within the leaves of treated trees. These promising results suggest that integrated management to reduce severity of X. fastidiosa that includes regular pruning and soil harrowing with spring and summer spray treatments with Dentamet®, is likely to effectively control the disease.

    Biosynthesis of cell wall polysaccharides during drought stress in apical roots of a drought-tolerant cv. of Triticum durum.

    No full text
    corecore