9 research outputs found

    Thermionic Emission as a tool to study transport in undoped nFinFETs

    Full text link
    Thermally activated sub-threshold transport has been investigated in undoped triple gate MOSFETs. The evolution of the barrier height and of the active cross-section area of the channel as a function of gate voltage has been determined. The results of our experiments and of the Tight Binding simulations we have developed are both in good agreement with previous analytical calculations, confirming the validity of thermionic approach to investigate transport in FETs. This method provides an important tool for the improvement of devices characteristics.Comment: 3 pages, 3 figure, 1 tabl

    Circuit-theoretic phenomenological model of an electrostatic gate-controlled bi-SQUID

    Full text link
    A numerical model based on a lumped circuit element approximation for a bi-superconducting quantum interference device (bi-SQUID) operating in the presence of an external magnetic field is presented in this paper. Included in the model is the novel ability to capture the resultant behaviour of the device when a strong electric field is applied to its Josephson junctions by utilising gate electrodes. The model is used to simulate an all-metallic SNS (Al-Cu-Al) bi-SQUID, where good agreement is observed between the simulated results and the experimental data. The results discussed in this work suggest that the primary consequences of the superconducting field effect induced by the gating of the Josephson junctions are accounted for in our minimal model; namely, the suppression of the junctions super-current. Although based on a simplified model, our results can potentially help with the task of clarifying the microscopic origin of this effect. Also, the possible applications of this effect regarding the operation of SQUIDs as ultra-high precision sensors, where the performance of such devices can be improved via careful tuning of the applied gate voltages, are discussed at the end of the paper.Comment: 9 pages, 4 figure

    Manifestation of the coupling phase in microwave cavity magnonics

    Full text link
    The interaction between microwave photons and magnons is well understood and originates from the Zeeman coupling between spins and a magnetic field. Interestingly, the magnon/photon interaction is accompanied by a phase factor which can usually be neglected. However, under the rotating wave approximation, if two magnon modes simultaneously couple with two cavity resonances, this phase cannot be ignored as it changes the physics of the system. We consider two such systems, each differing by the sign of one of the magnon/photon coupling strengths. This simple difference, originating from the various coupling phases in the system, is shown to preserve, or destroy, two potential applications of hybrid photon/magnon systems, namely dark mode memories and cavity-mediated coupling. The observable consequences of the coupling phase in this system is akin to the manifestation of a discrete Pancharatnam-Berry phase, which may be useful for quantum information processing

    Interface trap density metrology from sub-threshold transport in highly scaled undoped Si n-FinFETs

    Get PDF
    Channel conductance measurements can be used as a tool to study thermally activated electron transport in the sub-threshold region of state-of-art FinFETs. Together with theoretical Tight-Binding (TB) calculations, this technique can be used to understand the evolution of source-to-channel barrier height (Eb) and of active channel area (S) with gate bias (Vgs). The quantitative difference between experimental and theoretical values that we observe can be attributed to the interface traps present in these FinFETs. Therefore, based on the difference between measured and calculated values of (i) S and (ii) |dEb/dVgs| (channel to gate coupling), two new methods of interface trap density (Dit) metrology are outlined. These two methods are shown to be very consistent and reliable, thereby opening new ways of analyzing in situ state-of-the-art multi-gate FETs down to the few nm width limit. Furthermore, theoretical investigation of the spatial current density reveal volume inversion in thinner FinFETs near the threshold voltage.Comment: 12 figures, 13 pages, Submitted to Journal of Applied Physic

    Gigahertz single-electron pumping mediated by parasitic states

    Get PDF
    In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency-dependent features in the pumped current

    Probing the Spin States of a Single Acceptor Atom

    No full text
    We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|<i>m</i><sub><i>j</i></sub>| = 3/2) and light (|<i>m</i><sub><i>j</i></sub>| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |<i>g</i><sub><i>hh</i></sub>| = 0.81 ± 0.06 and |<i>g</i><sub><i>lh</i></sub>| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value
    corecore