512 research outputs found

    D-STREAMON: from middlebox to distributed NFV framework for network monitoring

    Full text link
    Many reasons make NFV an attractive paradigm for IT security: lowers costs, agile operations and better isolation as well as fast security updates, improved incident responses and better level of automation. On the other side, the network threats tend to be increasingly complex and distributed, implying huge traffic scale to be monitored and increasingly strict mitigation delay requirements. Considering the current trend of the net- working and the requirements to counteract to the evolution of cyber-threats, it is expected that also network monitoring will move towards NFV based solutions. In this paper, we present D- StreaMon an NFV-capable distributed framework for network monitoring realized to face the above described challenges. It relies on the StreaMon platform, a solution for network monitoring originally designed for traditional middleboxes. An evolution path which migrates StreaMon from middleboxes to Virtual Network Functions (VNFs) has been realized.Comment: Short paper at IEEE LANMAN 2017. arXiv admin note: text overlap with arXiv:1608.0137

    Extruded Expanded Polystyrene Sheets Coated by TiO2 as New Photocatalitic Materials for Foodstuffs Packaging

    Get PDF
    Nanostructured, photoactive anatase TiO2 sol prepared under very mild conditions using titanium tetraisopropoxide as the precursor is used to functionalise extruded expanded polystyrene (XPS) sheets by spray-coating resulting in stable and active materials functionalised by TiO2 nanoparticles. Photocatalytic tests of these sheets performed in a batch reactor in gas–solid system under UV irradiation show their successful activity in degrading probe molecules (2-propanol, trimethylamine and ethene). Raman spectra ensure the deposition of TiO2 as crystalline anatase phase on the polymer surface. The presence of TiO2 with respect to polymer surface can be observed in SEM images coupled to EDAX mapping allowing to monitor the surface morphology and the distribution of TiO2 particles. Finally thermoforming of these sheets in industrial standard equipment leads to useful containers for foodstuffs

    Behavior of Half-Joints: Design and Simulation of Laboratory Tests

    Get PDF
    European countries are characterized by an extensive infrastructural network, mainly built around the 1960s and 1970s. In that period prefabrication processes were starting to gain ground, and one of the most spread and studied typologies of bridges was constituted by reinforced or prestressed concrete decks. Those structures have gone through years of service, which caused the inevitable degradation of the materials and relevant deterioration of structural elements. Moreover, the design and construction processes of that period have soon become obsolete, and the knowledge relative to the influence of detailing increased significantly. One particular element that has been commonly used has been the half-joint, which is easy to prefabricate and has a strategic impact. However, in recent years this solution is showing critical aptitudes in resisting structural degradation and material decay. In addition, structural health monitoring (SHM) strategies are gaining attention since they are a very useful tool for gathering information on the current state of the structure and then for evaluating intervention plans to improve safety. Indeed, existing bridges, despite their working age, are still crucial to the development and sustainability of community life, and their decommissioning would be an act of critical impact on the communities (e.g., economy, logistics, sustainability). This contribution presents the design and the simulation of laboratory tests on half-joints of reinforced concrete beams that will be developed at the Politecnico di Torino in a subsequent step of the present research. They are designed to test and compare different monitoring techniques along with different steel reinforcement configurations. Specifically, the first part of the manuscript focuses on a review of the literature regarding the design, strengthening, and monitoring of half-joints. Subsequently, the laboratory setup to test half-joints is presented along with the numerical simulation to support the experimental design. Laboratory tests will involve the use of monitoring systems to detect the local response of the system and also to propose new solutions specifically for this type of connection using emerging technologies. Numerical collapse simulations show the effect of different reinforcement configurations and the collapse behavior

    Photocatalytic CO2 reduction in gas-solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light

    Get PDF
    GaP/TiO2 composites exhibited a remarkable photocatalytic activity for CO2 reduction in the presence of water vapor producing methane. By decreasing the GaP:TiO2 mass ratio an increase in the photocatalytic activity of the composite was observed for up to a 1:10 mass ratio. The photocatalytic activity of the composite can be attributed to the band structures of the solids as well as to the efficient charge transfer between GaP and TiO2 heterojunction

    Photocatalityc membrane reactor for CO2 conversion

    Get PDF
    Global warming is considered to be one of the principal environmental problems and CO2, being a greenhouse gas, largely contributes to the global climate change. Owing to this problem, an increasing concern has brought the scientific community to devote huge efforts towards CO2 reduction and/or valorization through a sustainable process. In this contest, photocatalytic membrane technologies can be a promising and innovative way to pursue CO2 conversion into value-added products.1 To this purpose, Carbon Nitride (C3N4) photocatalyst was prepared and characterized by FTIR and IR-ATR, DRS and XRD analyses. The preliminary reactivity experiments were carried out in a batch reactor (V = 120 mL) filled with humid CO2 and irradiated in a solar box (65°C). CH4 and CO were the main reduction products detected. This catalyst was then dispersed to obtain catalytic mixed matrix Nafion membranes. Comprehensive structural and morphological analyses by DRS, FT-IR, ATR-IR, SEM and N2 and CO2 permeability measurements were performed. The photocatalytic membranes were then used for the same reaction under UV-Vis irradiation in a membrane reactor operating in continuous mode, as already done with TiO2-Nafion catalytic membranes2. Different H2O/CO2 molar ratios and residence times were used. MeOH, EtOH and HCHO were the main products detected. Under the best experimental conditions, methanol and ethanol were identified as the main products with a productivity of 23 and 25 mol g-1 h-1, respectively. References. 1. R. Molinari, A. Caruso, L. Palmisano, Photocatalytic Membrane reactor in the conversion or degradation of organic compounds, in E. Drioli et L. Giorno (Eds.) Membrane Operations, innovative Separation and transformations, Chapter 15, 335-361, 2009, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim (Germany). 2. M. Sellaro, M. Bellardita, A. Brunetti, E. Fontananova, L. Palmisano, E. Drioli, G. Barbieri, “CO2 conversion in a photocatalytic continuous membrane reactor”, RSC Advances, 2016, 6, 67418 – 67427

    Genotoxicity of citrus wastewater in prokaryotic and eukaryotic cells and efficiency of heterogeneous photocatalysis by TiO2

    Get PDF
    The presence of (±)a-pinene, (+)b-pinene, (+)3-carene, and R-(+)limonene terpenes in wastewater of a citrus transformation factory was detected and analyzed, in a previous study, by using Solid Phase Microextraction (SPME) followed by GC analyses. Purpose of that research was to compare the genotoxic responses of mixtures of terpenes with the genotoxicity of the individual compounds, and the biological effects of actual wastewater. Genotoxicity was evaluated in the Salmonella reversion assay (Ames test) and in V79 cells by Comet assay. Ames tests indicated that the four single terpenes did not induce an increase of revertants frequency. On the contrary, the mixtures of terpenes caused, in the presence of metabolic activation, a highly significant increase of the revertants in TA100 strain in comparison to the control. The Comet assay showed a significant increase in DNA damage in V79 cells treated for 1 h with single or mixed terpenes. Moreover, the actual wastewater was found highly genotoxic in bacterial and mammalian cells. Photocatalytic tests completely photodegraded the pollutants present in aqueous wastewater and the initial high genotoxicity of samples of wastewater collected during the photocatalytic run, was completely lose in 3 h of irradiation

    Salicylic acid for the treatment of melasma: new acquisitions for monitoring the clinical improvement.

    Get PDF
    OBJECTIVE: The Melasma Area and Severity Index (MASI) and the Melasma Severity Score (MSS) are calculated on the basis of only a subjective clinical assessment. This raises the need to have an objective score, uniform in the evaluation by different clinicians. The purpose of this study was to establish if the images by Canfield Reveal Imager can be correlated to MASI score to better evaluate the clinical efficacy of salicylic acid 33% peeling in the treatment of melasma respect to the clinical observation. METHODS: The study was a voluntary observational study. Twenty female patients affected with melasma, aged between 30 and 60 years, were included in the study. Treatment with salicylic acid 33% was performed once a month, for a total of four times. The dermatologist (Doc A) examined each patient's melasma areas using MASI score, at the face-to-face observation and at Reveal images evaluation during the first (T0) and the end point time (T4). Digital photographs were also evaluated by another experienced dermatologist (Doc B), who has never seen clinically the patients before and who evaluated MASI score by Reveal images at time T0 and T4. RESULTS: Student's t-test and linear regression test were performed, showing statistically significant values comparing MASI score obtained by digital photo and MASI score obtained clinically. CONCLUSION: The monitoring of the improvement by Reveal images can optimize the treatment approach and the efficacy of same dermocosmetics procedures can be revised following standard criteria

    Nature of Interactions at the Interface of Two Water-Saturated Commercial TiO2 Polymorphs

    Get PDF
    Two commercial TiO2 samples, a 100% anatase and a 100% rutile, were used for the fast field cycling NMR experiments. The results showed a different behavior between the different samples. In particular, water molecules were unbonded to the solid surface for the rutile sample, whereas they appeared to chemically interact with the surface through H-bond formation with the anatase sample. The above findings accord with the generally lower activity of rutile with respect to anatase reported in literature for photocatalytic oxidation reactions in water. The difficulty of water to interact with rutile surface, indeed, could hinder the formation of OH radicals, which are the most important oxidant species

    Frailty and Sarcopenia in Older Patients Receiving Kidney Transplantation

    Get PDF
    Kidney transplantation is the treatment of choice for most of the patients with end-stage renal disease (ESRD). It improves quality of life, life expectancy, and has a lower financial burden to the healthcare system in comparison to dialysis. Every year more and more older patients are included in the kidney transplant waitlist. Within this patient population, transplanted subjects have better survival and quality of life as compared to those on dialysis. It is therefore crucial to select older patients who may benefit from renal transplantation, as well as those particularly at risk for post-transplant complications. Sarcopenia and frailty are frequently neglected in the evaluation of kidney transplant candidates. Both conditions are interrelated complex geriatric syndromes that are linked to disability, aging, comorbidities, increased mortality, and graft failure post-transplantation. Chronic kidney disease (CKD) and more importantly ESRD are characterized by multiple metabolic complications that contribute for the development of sarcopenia and frailty. In particular, anorexia, metabolic acidosis and chronic low-grade inflammation are the main contributors to the development of sarcopenia, a key component in frail transplant candidates and recipients. Both frailty and sarcopenia are considered to be reversible. Frail patients respond well to multiprofessional interventions that focus on the patients' positive frailty criteria, while physical rehabilitation and oral supplementation may improve sarcopenia. Prospective studies are still needed to evaluate the utility of formally measuring frailty and sarcopenia in the older candidates to renal transplantation as part of the transplant evaluation process
    • …
    corecore