19 research outputs found

    Performance Enhancement in Sliding Vane Rotary Compressors through a Sprayed Oil Injection Technology

    Get PDF
    In Sliding Vane Rotary Compressors, as well as in most of positive displacement machines, the oil is injected to fulfill sealing and lubrication purposes. However, the oil injection could produce an additional effect during the compression phase with a great saving potential from the energetic point of view. Being the air inside the cell at a higher temperature than the oil injected, a cooling effect could be achieved so decreasing the mechanical power required for the compression. At the moment, the oil is introduced inside the compressor vanes through a series of simple holes that are only able to produce solid jets. In this way any effective heat transfer is prevented, as demonstrated by p-V measurements inside the cells during the compression phase. In the current study, a theoretical model of a sprayed oil injection technology was developed and further experimentally validated. The oil was injected along the axial length of the compressor through a number of pressure swirl atomizers which produced a very fine spray. The conservation equations, solved with a Lagrangian approach, allowed to track the droplets evolution from the injection until the impingement onto the metallic surfaces of the vanes. The theoretical approach assessed the cooling effect due to the high surface to volume ratio of the droplets and a reduction of the indicated power was predicted. The model validation was carried out through a test campaign on an mid-size sliding vane compressor equipped with a series of pressure swirl injectors. The reconstruction of the indicator diagram as well as the direct measurements of torque and revolution speed revealed a reduction of the mechanical power absorbed close to 7 % using an injection pressure of 20 bar. The model is in a satisfactory agreement with the tests and it also confirms the experimental trends available in the literature. A parametric analysis on the injection pressure and temperature and on the cone spray angle was eventually carried out in order to identify an optimal set of operating injection parameters

    Experimental investigation on materials and lubricants for sliding-vane air compressors

    Get PDF
    Abstract. Positive-displacement compressors and, among them, sliding-vane rotary machines are widely used in the compressed air sector. As in many other industrial fields, the efficient utilization of energy has become a major goal also in this sector. The aim of the present activity is the experimental investigation on the influence of two vanes materials (cast iron and aluminium with anodized surface) and of four commercial lubricants (characterized by different formulations and additives concentrations) on the performance of a mid-capacity sliding-vane rotary compressor in a number of operating pressures. The performance is identified by both the volume flow rate and the absorbed mechanical power, evaluated according to the international standard ISO 5167 and ISO 1217. The campaign indicates that the considered lubricants do not affect appreciably the volumetric flow rate. On the other hand, the specific lubricants determine a variation of about 1% of the mechanical power for both materials, while the specific material a variation between 0.9% and 2.6%. The best performance is achieved by aluminium vanes and a synthetic poly-α-olefin lubricant

    An intracooling system for a novel two-stage sliding-vane air compressor

    Get PDF
    Lube-oil injection is used in positive-displacement compressors and, among them, in sliding-vane machines to guarantee the correct lubrication of the moving parts and as sealing to prevent air leakage. Furthermore, lube-oil injection allows to exploit lubricant also as thermal ballast with a great thermal capacity to minimize the temperature increase during the compression. This study presents the design of a two-stage sliding-vane rotary compressor in which the air cooling is operated by high-pressure cold oil injection into a connection duct between the two stages. The heat exchange between the atomized oil jet and the air results in a decrease of the air temperature before the second stage, improving the overall system efficiency. This cooling system is named here intracooling, as opposed to intercooling. The oil injection is realized via pressure-swirl nozzles, both within the compressors and inside the intracooling duct. The design of the two-stage sliding-vane compressor is accomplished by way of a lumped parameter model. The model predicts an input power reduction as large as 10% for intercooled and intracooled two-stage compressors, the latter being slightly better, with respect to a conventional single-stage compressor for compressed air applications. An experimental campaign is conducted on a first prototype that comprises the low-pressure compressor and the intracooling duct, indicating that a significant temperature reduction is achieved in the duct

    Modeling and Experimental Activities on a Small-scale Sliding Vane Pump for ORC-based Waste heat Recovery Applications☆

    Get PDF
    Abstract Pumping work in energy recovery units based on Organic Rankine Cycles (ORC) can severely affect the net power output recovered. Nevertheless, in recent years scientific andindustrial communities mainly focused on expanders' development. In order to address this lack of know-how and equipment, the current paper presents the development of a positive displacement ORC pump based on the sliding vane rotary technology. The machine was installed in a power unit for low-medium grade thermal energy recoverythat operated with oil at 70-120C as upper thermal source and tap water as lower one. Working fluid was R236fa while cycle pressure ratio ranged from 2.8 to 3.7. The ORC pump was also tested at different revolution speedssuch that mass flow rate varied between 0.05kg/s and 0.12kg/s. These experimental data were further used to validate a comprehensive one-dimensional model that takes into account fluid dynamic filling and emptying processes, closed vane transformation and leakages at blade tip, rotor slots and end walls clearances. Viscous and dry friction phenomena occurring between components in relative motion were additionally considered. A full operating map of the sliding vane pump was eventually retrieved to explore multiple off-design operating conditions. The parametric and modular structure of the model will act as a design platform to outline enhanced ORC sliding vane pump prototypes

    Modeling And Testing The Thermal Effect Of Lubricating Oil Sprayed In Sliding-Vane Air Compressors Using Pressure-Swirl Nozzles

    Get PDF
    Positive-displacement compressors and, among them, sliding-vane machines are widely used in the compressed air sector. As in many other industrial fields, the efficient utilization of energy has become a major goal also in this sector. The aim of the present activity is the numerical modeling and the experimental testing of the positive thermal effect due to spraying the lubricating oil inside sliding-vane air compressors using pressure-swirl nozzles. The benefits of proper oil atomization in positive-displacement compressors have been documented already by a number of investigations (Singh and Bowman, 1986; Stosic et al., 1988; Fujiwara and Osada, 1995; Valenti et al., 2013; Cipollone et al. 2014). The novelty of this work resides in the extension of a previous model to describe more accurately the quantity and the diameter distribution of the droplets generated by the nozzles and, consequently, to predict more precisely the heat transfer occurring between the liquid and the gas phase within a compression chamber. The model is applied to a pre-commercial mid-size compressor that is equipped with a number of pressure-swirl nozzles. The numerical data are validated successfully against the measurements of the pressure as a function of the angular position. The results indicate that the specific energy of compression is appreciable reduced with respect to the case of an adiabatic process. The model is applied here to a sliding-vane compressor, but it is general in nature and can be promptly modified for another kind of machine. It may be used also for optimizing type, number and position of the nozzles in order to further improve the performances of air compressors

    Mechanical Energy Recovery from Low Grade Thermal Energy Sources

    Get PDF
    An ORC based power plant for waste heat recovery in stationary applications has been developed and experimentally characterized. The aim of the study was to investigate the performance of a sliding vane rotary expander as the device to convert the enthalpy of the working fluid, namely R236fa, into mechanical and electric energy. A theoretical model of the expander supported the design and allowed to assess the thermodynamic transformations that take place in it. Furthermore, a deep experimental campaign explored the behavior of the expander and the one of the recovery system also at off design conditions. The experimental activity on the expander included the reconstruction of the indicated diagram using a set of high frequency piezoelectric pressure transducers that provided an accurate prediction of the pressure evolution inside the cell. The overall cycle efficiency achieved was close to 8% and further improvements concerned to the expander design have been addressed. The temperature of the upper thermal source at around 120 °C and the mechanical output power close to 2 kW make the expander and the whole system suitable for plenty of potential recovery applications. © 2013 The Authors

    Experimental investigation into an ORC-based low-grade energy recovery system equipped with sliding-vane expander using hot oil from an air compressor as thermal source

    Get PDF
    Compressed air production is an energy-intensive sector, thus compressor manufacturers are constantly looking for enhancing the efficiency, by acting on several technological aspects. In an air compressor, about 80-90% of the input electric power used is wasted into the environment through the oil circuit, continuously cooled by ambient air blown via a fan. An interesting way to optimize the overall system efficiency is to exploit this waste heat to produce electrical power. Organic Rankine Cycles (ORCs) are a suitable solution for recovering energy from low-grade heat source. In this paper, an experimental analysis of two low-grade ORC-based recovery systems is presented. The thermal source is the hot lubricant of a mid-size air compressor, while the thermal sink is tap water. The first system is tested in a simple cycle configuration while the second in a recuperative one. An extensive experimental campaign is carried out on a test bench composed by sliding-vane expander, pump and plate heat exchangers. The expander differs in terms of geometry and aspect ratio between the two cycles. R236fa is used as working fluid in both the systems. The expander operating conditions are deeply investigated by using piezoelectric pressure transducers to determine the expansion indicated diagram and the expander mechanical efficiency. Experimental results show that the recuperative cycle has a better performance, in terms of cycle efficiency and expander mechanical efficiency, compared with the simple cycle. For this configuration, two off-design conditions are investigated, acting on the pump rotational speed. Finally, an exergy analysis is conducted, in order to evaluate the irreversible losses produced by each component
    corecore