31 research outputs found

    Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells

    Get PDF
    Classical Hodgkin lymphoma (cHL) is characterized by sparsely distributed Hodgkin and Reed-Sternberg (HRS) cells amid reactive host background, complicating the acquisition of neoplastic DNA without extensive background contamination. We overcame this limitation by using flow-sorted HRS and intratumor T cells and optimized low-input exome sequencing of 10 patient samples to reveal alterations in genes involved in antigen presentation, chromosome integrity, transcriptional regulation, and ubiquitination. \u3b2-2-microglobulin (B2M) is the most commonly altered gene in HRS cells, with 7 of 10 cases having inactivating mutations that lead to loss of major histocompatibility complex class I (MHC-I) expression. Enforced wild-type B2M expression in a cHL cell line restored MHC-I expression. In an extended cohort of 145 patients, the absence of B2M protein in the HRS cells was associated with lower stage of disease, younger age at diagnosis, and better overall and progression-free survival. B2M-deficient cases encompassed most of the nodular sclerosis subtype cases and only a minority of mixed cellularity cases, suggesting that B2M deficiency determines the tumor microenvironment and may define a major subset of cHL that has more uniform clinical and morphologic features. In addition, we report previously unknown genetic alterations that may render selected patients sensitive to specific targeted therapies

    A Phase II Study to Assess the Safety and Efficacy of the Dual mTORC1/2 and PI3K Inhibitor Bimiralisib (PQR309) in Relapsed, Refractory Lymphoma.

    No full text
    Bimiralisib is an orally bioavailable pan-phosphatidylinositol 3-kinase and mammalian target of rapamycin inhibitor which has shown activity against lymphoma in preclinical models. This phase I/II study evaluated the response rate to bimiralisib at 2 continuous dose levels (60 mg and 80 mg) in patients with relapsed/refractory lymphoma. Fifty patients were enrolled and started treatment. The most common histologies were diffuse large B-cell lymphoma (n = 17), follicular lymphoma (n = 9), T-cell lymphoma (n = 8), and others (mostly indolent). Patients had been treated with a median of 5 prior lines of treatment and 44% were considered refractory to their last treatment. Mean duration of treatment (and standard deviations) with 60 mg once daily (o.d.) was 1.3 ± 1.2 months, and with 80 mg o.d. 3.7 ± 3.9 months. On an intention to treat analysis, the overall response rate was 14% with 10% achieving a partial response and 4% a complete response. Thirty-six percent of patients were reported as having stable disease. No dose-limiting toxicities were observed during the phase I portion of the study. Overall, 70% of patients had a grade 3 treatment emergent adverse events (TEAE) and 34% had a grade 4 TEAE; 28% of patients discontinued treatment due to toxicity. The most frequent TEAEs grade ≥3 was hyperglycemia (24%), neutropenia (20%), thrombocytopenia (22%), and diarrhea (12%). Per protocol, hyperglycemia required treatment with oral antihyperglycemic agents in 28% and with insulin in 14%. At 60 mg or 80 mg continuous dosing, bimiralisib showed modest efficacy with significant toxicity in heavily pretreated patients with various histological subtypes of lymphoma

    Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in anti-apoptotic and chromatin-remodeling genes.

    No full text
    To ascertain the genetic basis of pediatric Burkitt lymphoma (pBL) we performed clinical-grade next generation sequencing (NGS) of 189 cancer-related genes on 29 formalin-fixed paraffin embedded (FFPE) primary pBL samples. Ninety percent of cases had at least one mutation or genetic alteration, most commonly involving MYC and TP53. EBV(-) cases were more likely than EBV(+) cases to have multiple mutations (p<0.0001). Alterations in tumor-related genes not previously described in BL were identified. Truncating mutations in ARID1A, a member of the SWI/SNF nucleosome remodeling complex, were seen in 17% of cases. MCL1 pathway alterations were found in 22% of cases and confirmed in an expanded panel. Other clinically relevant genomic alterations were found in 20% of cases. Our data suggest the role of MCL1 and ARID1A in BL pathogenesis and demonstrate that comprehensive genomic profiling may identify additional treatment options in refractory disease
    corecore